Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(16+\left(27-7\cdot6\right)-\left(94\cdot7-27\cdot99\right)\)
\(=16+27-7\cdot6-94\cdot7+27\cdot99\)
\(=16+27\left(1+99\right)-7\left(6+94\right)=16+2700-700=2016\)
b)\(A=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+...+\frac{2}{97\cdot100}\)
\(=\frac{1}{3}\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{7}+\frac{2}{7}-\frac{2}{10}+...+\frac{2}{97}-\frac{2}{100}\right)\)
\(=\frac{1}{3}\left(2-\frac{2}{100}\right)=\frac{1}{3}\cdot\frac{99}{50}=\frac{33}{50}\)
Có : 3/5 A = 3/1.4 + 3/4.7 + 3/7.10 + ..... + 3/307.310
= 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ........ + 1/307 - 1/310
= 1 - 1/310
= 309/310
=> A = 309/310 : 3/5 = 103/62
Tk mk nha
\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{307.310}\)
\(=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{307.310}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{307}-\frac{1}{310}\right)\)
\(=\frac{5}{3}\left(1-\frac{1}{310}\right)\)
\(=\frac{5}{3}.\frac{309}{310}=\frac{103}{62}\)
=\(\frac{1}{3}\times\left(\frac{2}{1}-\frac{2}{4}+\frac{2}{4}-\frac{2}{8}+...+\frac{2}{28}-\frac{2}{31}\right)\)
=\(\frac{1}{3}\times\left(\frac{2}{1}-\frac{2}{31}\right)=\frac{20}{31}\)
Bấm đúng cho tui, đi mà. CHÚC BẠN HỌC GIỎI
bài giải đó là sai giả như vầy nè
\(=\frac{1}{3}\cdot2\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{28}-\frac{1}{31}\right)\)
\(=\frac{2}{3}\left(1-\frac{1}{31}\right)\)
=\(\frac{2}{3}\cdot\frac{30}{31}=\frac{20}{31}\)
a)\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{46}-\frac{1}{56}\)
=\(1-\frac{1}{56}=\frac{55}{56}\)
b)\(A.\frac{1}{3}=\frac{1}{3}.\left(\frac{3}{1.2}+\frac{3}{2.3}+....+\frac{3}{99.100}\right)\)
= \(\frac{1}{3}A=\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{3}{99.100}\)
=> \(\frac{1}{3}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(\frac{1}{3}A=1-\frac{1}{100}=\frac{99}{100}\)
=> \(A=\frac{99}{100}.3=\frac{297}{100}\)
c)\(B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
d) \(\frac{3}{5}C=\frac{3}{5}.\left(\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\right)\)
=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\)
=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{103}\)
=\(1-\frac{1}{103}=\frac{102}{103}\)
=>\(C=\frac{102}{103}.\frac{5}{3}=\frac{170}{103}\)
e) \(\frac{4}{7}D=\frac{4}{7}.\left(\frac{7}{1.5}+\frac{7}{5.9}+...+\frac{7}{101.105}\right)\)
=\(\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{101.105}\)
=\(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{101}-\frac{1}{105}\)
=\(1-\frac{1}{105}=\frac{104}{105}\)
=< D=\(\frac{104}{105}.\frac{7}{4}=\frac{26}{15}\)
B=2(1/1.4 +1/4.7+....+1/97.100)
3B= 2(3/1.4+3/4.7+...+3/97.100)
3B=2(1-1/4+1/4-1/7+...+1/97-1/100)
3B= 2(1-1/100)
3B= 2.99/100
3B= 99/50
B=33/50.
B=2/1.4+2/4.7+2/7.10+...+2/97.100
B=2/3.3/1.4+2/3.3/4.7+2/3.3/7.10+...+2/3.3/97.100
B=2/3(1-1/4+1/4-1/7+1/7-1/10+...+1/97-1/100) (dùng phương pháp khử)
B=2/3(1-1/100)
B=2/3.99/100
B=33/50
1.
`16 + (27 - 7.6 ) - (94 -7 - 27.99)`
`= 16+ 27 - 7.6 - 94 + 7 + 27.99`
`= 16 + 27(99 +1) - 7(6-1) - 94`
`= -78 + 27.100 - 7.5`
`= 2587`
2.
`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`
`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`
`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`
`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`
`3/2A = 1 - 1/100`
`3/2 A= 99/100`
`A= 99/100 : 3/2`
`A=33/50`
Vậy `A= 33/50`
1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99
=(27+27.99)+(27+7-94)+16
=27.100-60+16
=2700-44=2656
2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)
=\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
a) A = 3/10.12 + 3/12.14 + ... + 3/998.1000
2/3.A = 2/10.12 + 2/12.14 + ... + 2/998.1000
2/3.A = 1/10 - 1/12 + 1/12 - 1/14 + ... + 1/998 - 1/1000
2/3.A = 1/10 - 1/1000
2/3.A = 99/1000
A = 99/1000 : 2/3
A = 99/1000 . 3/2
A = 297/2000
b) B = 2/1.4 + 2/4.7 + 2/7.10 + ... + 2/22.25
3/2.B = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/22.25
3/2.B = 1 - 1/4 + 1/4 - 1/7 + 1/7 - 1/10 + ... + 1/22 - 1/25
3/2.B = 1 - 1/25
3/2.B = 24/25
B = 24/25 : 3/2
B = 24/25 . 2/3
B = 16/25
Ủng hộ mk nha ^_-
a) Ta có: \(A=\frac{3}{10.12}+\frac{3}{12.14}+....+\frac{3}{998.1000}.\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10.12}+\frac{1}{12.14}+...+\frac{1}{998.1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{998}-\frac{1}{1000}\)
\(\Rightarrow\frac{2}{3}A=\frac{1}{10}-\frac{1}{1000}=\frac{99}{1000}\)
\(\Rightarrow A=\frac{99}{1000}:\frac{2}{3}=\frac{297}{2000}\)
tui chỉ làm phần b thôi há !
B=\(\frac{3}{4}\)+\(\frac{27}{28}\)+\(\frac{69}{70}\)+...+\(\frac{867}{868}\)=\(\frac{4-1}{4}\)+\(\frac{28-1}{28}\)+\(\frac{70-1}{70}\)+...+\(\frac{868-1}{868}\)
= 1+1+..+1 -(\(\frac{1}{4}\)+\(\frac{1}{28}\)+\(\frac{1}{70}\)+...+\(\frac{1}{868}\)) = 10 - \(\frac{1}{3}\)(\(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+\(\frac{3}{7.10}\)+...+\(\frac{3}{28.31}\))
=10-\(\frac{1}{3}\)(1-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{7}\)+\(\frac{1}{7}\)-\(\frac{1}{10}\)+...+\(\frac{1}{28}\)-\(\frac{1}{30}\))=10-\(\frac{1}{3}\)(1-\(\frac{1}{30}\))=10-\(\frac{1}{3}\).\(\frac{29}{30}\)=10-\(\frac{29}{30}\)=\(\frac{271}{30}\)