K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

a) Gọi d là UCLN ( n ; n+1 )                    

n+1 chia hết cho d                                             

n chia hết cho d                                               

-> n+1-n chia hết cho d                                 

-> 1chia hết cho d

=>N và n+1 là 2 số nguyên tố cùng nhau

=>ĐPCM                                       

1 tháng 11 2015

Còn mấy câu còn lại đâu

 

12 tháng 11 2015

mik chi la dc cau 2 thui

goi d la uoc chung cua (20n+9;30n+13)

(20n+9)chia het cho d (30n+13)chiahet cho d

(GIANG BAI:sau khi tinh ngoai nhap: UCLN cua (20n+9;30n+13) la 60)

luu y:ban ko ghi phan giang bai vao tap

3(20n+9) - 2(30n+13)

(60n+27) - (60n+26)

   con 1 chia het d 

suy ra:d thuoc U(1)={1}

suy ra:UCLN(20n+9 va 30n+13)=1

vay:20n+9 va 30n+13 la2 so nguyen cung nhau

chu thich:ban vui long thay chu suy ra bang dau suy ra trong toan hoc va thay chua chia het bang dau chia het trong toan hoc

16 tháng 1 2016

câu 1:

Ta có :2n-1=2(n-3)+5

Để 2(n-3)+5 chia hết cho 2n-3 thì n-3 thuộc Ư(5)  *vì 2(n-3) chia hết cho n-3*

Mà Ư(5)={1;-1;5;-5}

Ta có bảng sau:

   n-3       -5         -1         1             5

    n        -2          2          4            8

  Vậy n thuộc {-2;2;4;8}

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

13 tháng 12 2016

1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2

2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên

=>n+1;2n+3 chia hết cho a

=>2.(n+1);2n+3 chia hết cho a

=>2n+2;2n+3 chia hết cho a

=>(2n+3)-(2n+2) chia hết cho a

=>1 chia hết cho a

=>a=1

=>n+1 và 2n+3 là hai số nguyên tố cùng nhau

20 tháng 12 2016

Câu 4:
Giải:

Ta có:

\(n+1⋮2n-3\)

\(\Rightarrow2\left(n+1\right)⋮2n-3\)

\(\Rightarrow2n+2⋮2n-3\)

\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)

\(\Rightarrow5⋮2n-3\)

\(\Rightarrow2n-3\in\left\{1;5\right\}\)

+) \(2n-3=1\Rightarrow n=2\)

+) \(2n-3=5\Rightarrow n=4\)

Vậy \(n\in\left\{2;4\right\}\)

*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.

20 tháng 12 2016

1)Ta có:[a,b].(a,b)=a.b

120.(a,b)=2400

(a,b)=20

Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))

\(\Rightarrow20k\cdot20m=2400\)

\(400\cdot k\cdot m=2400\)

\(k\cdot m=6\)

Mà ƯCLN(k,m)=1,\(k,m\in N\)

Ta có bảng giá trị sau:

k2316
m3261
a406020120
b604012020

Mà a,b là SNT\(\Rightarrow\)a,b không tìm được

2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15

Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)

Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)

\(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)