Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để B chia hết cho 2;5
=>y =0
Thay vào ta được:x1830
Để B chia 9 dư 1 thì (x+1+8+3+0)chia 9 dư 1
=>(x+12)chia 9 dư 1
=>x=7
ta có: a . b = ƯCLN ( a , b ) ; BCNN ( a , b )
theo bài ra ta được:
a . b = 630 . 18
a . b = 11340
vì a . b = 11340 \(\Rightarrow\)a , b \(\in\)Ư ( 11340 ) = { 1; 2; 3; 4; 5; 6; 7; 9; 10; 12; 14; 15; 18; 20; 21; 27; 28; 30; ...; 11340 }
TH1 : a = 1 thì b = 11340
TH2 : a = 2 thì b = 5670
TH3 : a = 3 thì b = 3780
TH4 : a = 4 thì b = 2835
TH5 : a = 5 thì b = 2268
...
TH cuối : a = 11340 thì b = 1
Vậy a = 1, b = 11340
a = 2 , b = 5670
....
a = 11340 , b = 1
Theo đề bài ta có : UCLN(a,b)=18
=> a= 18m ; b = 18 n UCLN (m,n) = 1
ta có : a.b= BCNN(a,b).UCLN(a,b)=630.18=5670
=18m.18n=324.m.n=11340
=>m.n=11340:324=35
=>m,n thuộc U(35)={1,5,7,3}
lập bảng
m | n | a | b |
1 | 35 | 18 | 630 |
5 | 7 | 90 | 126 |
7 | 5 | 126 | 90 |
35 | 1 | 630 | 18 |
vậy các cặp a,b thỏa mãn là (18,630);(90;126);(126;90);(630;18)
a. để B chia hết cho2,5,9 dư 1 thì A có tận cùng là 1.
khi đó ta có:x1831 chia2,5,9 dư 1
suy ra (x+1+8+3+1) chia 9 dư 1
suy ra x=6 và y =1
Có abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
=> a <= 3
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
vậy c chỉ có thể = 5
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
vậy số abc là 195
chúc bn hk toyó @_@
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
Bạn tham khảo tại link sau
https://olm.vn/hoi-dap/detail/22224476315.html
chúc bạn
hok tốt
Câu 1:
Để B chia hết cho 2, 5, 9 di 1 thì B phải có tận cùng là 1.
Khi đó, ta có: x183y chia hết cho 2, 5, 9 dư 1
=> (x + 1 + 8 + 3 + y) chia 9 dư 1
=> x = 6; y = 1
Câu 2:
Theo đề bài, ta có: UCLN(a, b) = 18
=> a = 18m, b = 18n (UCLN(m,n) = 1)
Ta có: a . b = BCNN(a, b), UCLN(a, b) = 630 . 18 = 5670
=> 18m . 18n = 324 . m . n = 11340
=> m . n = 11340 : 324 = 35
=> m, n thuộc U(35) = {1, 5, 7, 3)
Ta có bảng:
=> Các cặp a, b thỏa mãn là: (18, 630); (90, 126); (126; 90); (630; 18)