K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(A=\left(\sqrt{48}-2\sqrt{3}+2\sqrt{5}\right)\cdot\sqrt{5}-2\sqrt{45}-\sqrt{3}\)

\(=\left(2\sqrt{3}+2\sqrt{5}\right)\cdot\sqrt{5}-6\sqrt{5}-\sqrt{3}\)

\(=2\sqrt{15}+10-6\sqrt{5}-\sqrt{3}\)

b: Ta có: \(B=\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}-\dfrac{1}{\sqrt{5}+\sqrt{2}}\right)\cdot\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

\(=\dfrac{\sqrt{5}+\sqrt{2}-\sqrt{5}+\sqrt{2}}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)

\(=\dfrac{2\sqrt{2}}{9+6\sqrt{2}}=\dfrac{-8+6\sqrt{2}}{3}\)

\(A=\dfrac{2-\sqrt{a}-\sqrt{a}-3}{2\sqrt{a}+1}=-1\)

\(B=\dfrac{1}{1-\sqrt{2+\sqrt{3}}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\)

\(=\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}-1}-\dfrac{\sqrt{2}}{\sqrt{2}-\sqrt{3}+1}\)

\(=\dfrac{2-\sqrt{6}+\sqrt{2}-2+\sqrt{6}+\sqrt{2}}{5-2\sqrt{6}-1}\)

\(=\dfrac{2\sqrt{2}}{4-2\sqrt{6}}=\dfrac{1}{\sqrt{2}-\sqrt{3}}=-\sqrt{2}-\sqrt{3}\)

 

24 tháng 11 2021

\(a,=\dfrac{\sqrt{5}+1+\sqrt{5}-1}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\\ b,=\sqrt{\left(3-\sqrt{5}\right)^2}+\left|2-\sqrt{5}\right|=3-\sqrt{5}+\sqrt{5}-2=1\\ c,=\dfrac{2\left(\sqrt{5}-\sqrt{3}\right)}{2}-\dfrac{-\sqrt{3}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{5}-\sqrt{3}}=\sqrt{5}-\sqrt{3}+\sqrt{3}=\sqrt{5}\)

19 tháng 10 2021

\(A=-\dfrac{3+\sqrt{5}+3-\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\cdot\dfrac{\sqrt{5}}{5}\\ A=\dfrac{-6}{4}\cdot\dfrac{\sqrt{5}}{5}=\dfrac{-3\sqrt{5}}{10}\)

17 tháng 12 2023

a: \(\dfrac{2}{\sqrt{3}-1}-\dfrac{2}{\sqrt{3}+1}\)

\(=\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{3-1}\)

\(=\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{2}=\dfrac{4}{2}=2\)

b: \(\dfrac{\sqrt{12}-\sqrt{6}}{\sqrt{30}-\sqrt{15}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{\sqrt{15}\left(\sqrt{2}-1\right)}\)

\(=\dfrac{\sqrt{6}}{\sqrt{15}}=\sqrt{\dfrac{6}{15}}=\sqrt{\dfrac{2}{5}}=\dfrac{\sqrt{10}}{5}\)

c: \(\sqrt{9a}+\sqrt{81a}+3\sqrt{25a}-16\sqrt{49a}\)

\(=3\sqrt{a}+9\sqrt{a}+3\cdot5\sqrt{a}-16\cdot7\sqrt{a}\)

\(=27\sqrt{a}-112\sqrt{a}=-85\sqrt{a}\)

d: \(\dfrac{ab-bc}{\sqrt{ab}-\sqrt{bc}}=\dfrac{\left(\sqrt{ab}-\sqrt{bc}\right)\left(\sqrt{ab}+\sqrt{bc}\right)}{\sqrt{ab}-\sqrt{bc}}\)

\(=\sqrt{ab}+\sqrt{bc}\)

e: \(a\left(\sqrt{\dfrac{a}{b}+2\sqrt{ab}+b\cdot\sqrt{\dfrac{a}{b}}}\right)\cdot\sqrt{ab}\)

\(=a\cdot\sqrt{\dfrac{a}{b}\cdot ab+2\sqrt{ab}\cdot ab+b\cdot\sqrt{\dfrac{a}{b}}\cdot ab}\)

\(=a\cdot\sqrt{a^2+2\cdot ab\cdot\sqrt{ab}+a\sqrt{a}\cdot b\sqrt{b}}\)

\(=a\cdot\sqrt{a^2+3\cdot a\cdot\sqrt{a}\cdot b\cdot\sqrt{b}}\)

e: ĐKXĐ: a>=0 và a<>1

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1+a\sqrt{a}}{1+\sqrt{a}}\)

\(=\left(\dfrac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=\left(1+\sqrt{a}+\sqrt{a}+a\right)\cdot\left(a-\sqrt{a}+1\right)\)

\(=\left(\sqrt{a}+1\right)^2\cdot\left(a-\sqrt{a}+1\right)\)

a) \(\dfrac{1}{2}\sqrt{20}+5=\dfrac{1}{2}\cdot2\sqrt{5}+5=5+\sqrt{5}\)

b) \(\sqrt{16}+\sqrt{64}=4+8=12\)

c) \(\sqrt{20}-\sqrt{45}+3\sqrt{18}=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}=9\sqrt{2}-\sqrt{5}\)

d) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{2}=2-\sqrt{2}+\sqrt{2}=2\)

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

22 tháng 1 2022

\(a,\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}=\left|\sqrt{3}+1\right|+\left|\sqrt{3}-1\right|=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

\(b,A=\dfrac{\sqrt{a}}{\sqrt{a}-5}-\dfrac{10\sqrt{a}}{a-25}-\dfrac{5}{\sqrt{a}+5}\)

\(\Rightarrow A=\dfrac{\sqrt{a}\left(\sqrt{a}+5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\left(\sqrt{a}-5\right)}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{10\sqrt{a}}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}-\dfrac{5\sqrt{a}-25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{a-10\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\left(\sqrt{a}-5\right)^2}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}\)

\(\Rightarrow A=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

a: \(=\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)

b: \(A=\dfrac{a+5\sqrt{a}-10\sqrt{a}-5\sqrt{a}+25}{\left(\sqrt{a}-5\right)\left(\sqrt{a}+5\right)}=\dfrac{\left(\sqrt{a}-5\right)^2}{a-25}=\dfrac{\sqrt{a}-5}{\sqrt{a}+5}\)

AH
Akai Haruma
Giáo viên
18 tháng 9 2023

Lời giải:
a.

\(=\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}+\frac{4(\sqrt{5}-1)}{(\sqrt{5}-1)(\sqrt{5}+1)}=\frac{\sqrt{5}+2}{5-2^2}+\frac{4(\sqrt{5}-1)}{5-1}\)

$=\sqrt{5}+2+(\sqrt{5}-1)=2\sqrt{5}+1$
b.

$=\frac{4(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}+\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}-2\sqrt{3}$

$=\frac{4(\sqrt{3}+1)}{2}+\frac{7(3+\sqrt{2})}{1}-2\sqrt{3}$
$=2(\sqrt{3}+1)+7(3+\sqrt{2})-2\sqrt{3}$
$=23+7\sqrt{2}$
c.

$=(\frac{4(3+\sqrt{5})}{(3-\sqrt{5})(3+\sqrt{5})}-\frac{\sqrt{5}+2}{(\sqrt{5}-2)(\sqrt{5}+2)}).\frac{7(3+\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}$

$=[(3+\sqrt{5})-(\sqrt{5}+2)].(3+\sqrt{2})$

$=1(3+\sqrt{2})=3+\sqrt{2}$

17 tháng 10 2021

\(a,=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}=-1-3\sqrt{15}\)

\(b,=x\sqrt{2\left(x+1\right)}+\sqrt{\dfrac{2\left(x+1\right)^2}{x+1}}-\sqrt{\dfrac{16\left(x+1\right)}{2}}\\ =x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\\ =\sqrt{2\left(x+1\right)}\left(x+1-2\right)=\left(x-1\right)\sqrt{2\left(x+1\right)}\)

17 tháng 10 2021

a.\(=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\dfrac{\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\dfrac{5-\sqrt{15}-2\sqrt{15}+6}{5-3}-\dfrac{10+2\sqrt{15}+\sqrt{15}+3}{5-3}\)

=\(\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}\)

=\(-1-3\sqrt{15}\)

b.=\(x\sqrt{2\left(x+1\right)}+\left(x+1\right)\sqrt{\dfrac{2\left(x+1\right)}{\left(x+1\right)^2}}-4\sqrt{\dfrac{2\left(x+1\right)}{2^2}}\)

=\(x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\)

=\(\sqrt{2\left(x+1\right)}\left(x+1-2\right)\)

=\(\left(x-1\right)\sqrt{2\left(x+1\right)}\)