K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

câu 1:

\(B=\dfrac{x-2}{y}-\dfrac{x}{x-2}+\dfrac{4}{x.\left(x-2\right)}\) 

\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2.x}{y.\left(x-2\right).x}-\dfrac{x^2y}{y.\left(x-2\right).x}+\dfrac{4y}{y.\left(x-2\right).x}\)

\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-x^2y+4y}{x^2y-2xy}\)

\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x^2-4\right)}{xy.\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x-2\right).\left(x+2\right)}{xy.\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{\left(x-2\right)\left[x-2-y.\left(x+2\right)\right]}{xy.\left(x-2\right)}\)

\(\Leftrightarrow B=\dfrac{x-2-xy+2}{xy}=\dfrac{x-xy}{xy}\)

\(\Leftrightarrow B=\dfrac{x}{xy}-\dfrac{xy}{xy}=\dfrac{1}{y}-1=\dfrac{1-y}{y}\)

Vậy \(B=\dfrac{1-y}{y}\) 

 

a) Xét tứ giác AEFD có: 

\(\widehat{EAD}=\widehat{ADF}=\widehat{EFD}\) (cùng bằng 90 độ) 

=> AEFD là hình chữ nhật (do có 3 góc vuông)

Gọi I' là 1 điểm mà AC cắt EF 

Xét tam giác CAD có: 

I' nằm trên EF nêm I'F song song với AD (AEFD là hình chữ nhật) (1)

vì AEFD là hình chữ nhật nên AE=DF => DF = DC :2 <=> F là trung điểm của CD (2)

Từ (1) và (2) => I' là trung điểm của AC đồng thời ta được I'F = AD:2 

mà AD = EF 

=> I' là trung điểm của EF => I' trùng với I 

=> I là trung điểm của AC

( do I' là trung điểm của AC và I' là giao điểm của AC và EF)

=> điều phải chứng minh

30 tháng 12 2021

giải giúp mình với ạ mình đang cần gấppppp

 

30 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=FE

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC           b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB,...
Đọc tiếp

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I thuộc BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

2
14 tháng 7 2018

Bài 1 nếu chứng minh cũng chỉ được góc EMD= 2 góc AEM thôi

14 tháng 7 2018

chứng minh kiểu gì vậy

27 tháng 12 2020

Bạn ơi! Liệu bạn có hình của câu b không?

29 tháng 12 2020

Bạn áp dụng công thức đi

 

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Lời giải:
a. Vì $ABCD$ là hình chữ nhật nên $\widehat{A}=\widehat{D}=90^0$

$MN\perp CD$ nên $\widehat{MND}=90^0$
Tứ giác $AMND$ có 3 góc vuông $\widehat{A}=\widehat{D}=\widehat{N}$ nên là hcn.

b. 

Hoàn toàn tương tự phần a ta thấy $\widheat{B}=\widehat{C}=\widehat{N}$ nên $BMNC$ là hcn

$\Rightarrow BM=NC$
$AMND$ là hcn nên $AM=DN$

Mà $AM=BM$ nên $AM=NC$
Có $AM\parallel NC$ (do $AB\parallel CD$) và $AM=NC$ nên $AMCN$ là hbh

$\Rightarrow AC, MN$ cắt nhau tại trung điểm mỗi đường.

Mà $O$ là trung điểm $MN$ nên $O$ cũng là trung điểm $AC$.

c.

Vì $AMCN$ là hbh (theo phần b) nên $AN\parallel CM$

$\Rightarrow EN\parallel FC$
$\Rightarrow \frac{DE}{EF}=\frac{DN}{NC}=1$ (theo định lý Talet)

$\Rightarrow DE=EF(1)$

Mặt khác:

$AN\parallel CM$

$\Rightarrow MF\parallel AE$

$\Rightarrow \frac{BF}{EF}=\frac{BM}{MA}=1$ (định lý Talet)

$\Rightarrow BF=EF(2)$

Từ $(1); (2)\Rightarrow DE=EF=BF$

AH
Akai Haruma
Giáo viên
24 tháng 10 2023

Hình vẽ: