K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

Câu 1 dễ, bn tự lm nhé

Câu 2:Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk 
c=dk 
Xét : 2a-3c/2b-3d=2bk-3dk/2b-3d= 
k^2.(2b-3d)/2b-3d=k^2 (1) 
2a+3c/2b+3d=2bk+3dk/2b+3d= 
k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

23 tháng 7 2016

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2b+3d}\)

Vậy ta có đpcm

12 tháng 7 2015

sai đề r, a/3 là s, phải a/b chứ, nếu là a/b thì lm ntnày:

Lấy a/b=c/d=k(k thuộc N*) 
=>a=bk ; c=dk 
Xét : + 2a-3c/2b-3d=2bk-3dk/2b-3d= k^2.(2b-3d)/2b-3d=k^2 (1) 
       + 2a+3c/2b+3d=2bk+3dk/2b+3d= k^2.(2b+3d)/2b+3d=k^2 (2) 
(1);(2)=> 2a-3c/2b-3d=2a+3c/2b+3d(đpcm)

Vậy 2a-3c/2b-3d=2a+3c/2b+3d

26 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)

\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{2a+3c}{2b+3d}\) (Đpcm)

26 tháng 7 2018

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\hept{\begin{cases}\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{3b+3d}\\\frac{2a}{2b}=\frac{3c}{3d}=\frac{3a-3c}{3b-3d}\end{cases}}\)

\(\Rightarrow\frac{2a-3c}{3b-3d}=\frac{3a+3c}{2b+3d}\)( Đpcm )

1 tháng 2 2018

4) 

a) x/5 = y/3

=> 3x = 5y

=> x/y = 5/3

=> x= 16 :(5+3) . 5 = 10 ; y = 16 - 10 =6

=> (x;y) thuộc {(10;6)}

16 tháng 2 2015

vế phải dưới mẫu là 2b + 3d chứ?

7 tháng 2 2017

\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}\)

Theo tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}\) và \(\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a-3c}{2b-3d}\)

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)

4 tháng 4 2020

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Khi đó:

\(\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)

\(\frac{2a+3c}{2a+3d}=\frac{2bk+3dk}{2a+3d}=\frac{k\left(2a+3d\right)}{2a+3d}=k\)

Vậy \(\frac{2a-3c}{2b-3d}=\frac{2a+3c}{2a+3d}=k\)

Ta có đpcm

2 tháng 3 2018

Vì \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=kd\)

\(\Rightarrow\frac{2a-3c}{2b-3d}=\frac{2bk-3dk}{2b-3d}=\frac{k\left(2b-3d\right)}{2b-3d}=k\)(1)

\(\Rightarrow\frac{2a+3c}{2b+3d}=\frac{2bk+3dk}{2b+3d}=\frac{k\left(2b+3d\right)}{2b+3d}=k\)(2)

\(\RightarrowĐPCM\)

23 tháng 6 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\)

Ta có:

Nếu:

\(\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\Leftrightarrow\left(2a+c\right)\left(b-d\right)=\left(a-c\right)\left(2b+d\right)\)

\(\Leftrightarrow2a\left(b-d\right)+c\left(b-d\right)=a\left(2b+d\right)-c\left(2b+d\right)\)

\(\Leftrightarrow2ab-2ad+bc-cd=2ab+ad-2bc+cd\)

\(\Leftrightarrow ad=bc\)

\(\Leftrightarrow\dfrac{2a+c}{2b+d}=\dfrac{a-c}{b-d}\left(đpcm\right)\)