Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
x3 + x2 + y3 - y2
= (x3 + y3) + (x2 - y2 )
= (x+y).(x2 -xy + y2 ) + (x-y).(x+y)
= (x+y).(x2 -xy + y2 + x -y)
Câu 2:
a) P = x - x2
P = - (x2 - 2.1/2.x + 1/4 - 1/4)
P = - (x -1/2)2 + 1/4
mà \(\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0.\)
Để M lớn nhất
Dấu "=" xảy ra khi
- (x-1/2)2 = 0 => x = 1/2
=> giá trị lớn nhất của M = 1/4 tại x = 1/2
câu 1
a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)
b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)
Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được
\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)
Bài 1:
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3-x+y\right)\)
\(=2\left(x-y\right)\left(2x+3+y\right)\)
Bài 2:
\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(3x-1-x-1\right)^2\)
\(=\left(2x-2\right)^2\)(1)
b) Thay \(x=\frac{9}{4}\)vào (1) ta được:
\(\left(2.\frac{9}{4}-2\right)^2\)
\(=\frac{25}{4}\)
Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)
Bài 3:
Ta có: \(M=x^2+4x+5\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)
Hay \(M\ge1;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(M_{min}=1\Leftrightarrow x=-2\)
Bài 1 : trên là sai nha mình làm lại
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)
\(=2\left(x-y\right)\left(2x+4y\right)\)
\(=4\left(x-y\right)\left(x+2y\right)\)
Câu 1:
a) \(2x^2+5x-3=\left(2x^2+6x\right)-\left(x+3\right)\)
\(=2x\left(x+3\right)-\left(x+3\right)=\left(x+3\right)\left(2x-1\right)\)
b) \(x^4+2009x^2+2008x+2009\)
\(=\left(x^4-x\right)+\left(2009x^2+2009x+2009\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2009\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2009\right)\)
c) \(\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]=-16\) (đã sửa đề)
\(\Leftrightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2-16+16=0\)
\(\Leftrightarrow\left(x^2+10x+20\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5-\sqrt{5}\\x=-5+\sqrt{5}\end{cases}}\)
Câu 1.
a) 2x2 + 5x - 3 = 2x2 + 6x - x - 3 = 2x( x + 3 ) - ( x + 3 ) = ( x + 3 )( 2x - 1 )
b) x4 + 2009x2 + 2008x + 2009
= x4 + 2009x2 + 2009x - x + 2009
= ( x4 - x ) + ( 2009x2 + 2009x + 2009 )
= x( x3 - 1 ) + 2009( x2 + x + 1 )
= x( x - 1 )( x2 + x + 1 ) + 2009( x2 + x + 1 )
= ( x2 + x + 1 )[ x( x - 1 ) + 2009 ]
= ( x2 + x + 1 )( x2 - x + 2009 )
c) ( x + 2 )( x + 4 )( x + 6 )( x + 8 ) = 16 ( xem lại đi chứ không phân tích được :v )
Câu 2.
3x2 + x - 6 - √2 = 0
<=> ( 3x2 - 6 ) + ( x - √2 ) = 0
<=> 3( x2 - 2 ) + ( x - √2 ) = 0
<=> 3( x - √2 )( x + √2 ) + ( x - √2 ) = 0
<=> ( x - √2 )[ 3( x + √2 ) + 1 ] = 0
<=> \(\orbr{\begin{cases}x-\sqrt{2}=0\\3\left(x+\sqrt{2}\right)+1=0\end{cases}}\)
+) x - √2 = 0 => x = √2
+) 3( x + √2 ) + 1 = 0
<=> 3( x + √2 ) = -1
<=> x + √2 = -1/3
<=> x = -1/3 - √2
Vậy S = { √2 ; -1/3 - √2 }
Câu 3.
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A = t( t - 4 ) = t2 - 4t = ( t2 - 4t + 4 ) - 4 = ( t - 2 )2 - 4 ≥ -4 ∀ t
Dấu "=" xảy ra khi t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 - x + 2x - 2 = 0
=> x( x - 1 ) + 2( x - 1 ) = 0
=> ( x - 1 )( x + 2 ) = 0
=> x = 1 hoặc x = -2
=> MinA = -4 <=> x = 1 hoặc x = -2
a, =x4(x+2)-x3(x+2)+x2(x+2)-x(x+2)+(x+2)
=(x+2)(x4-x3+x2-x+1)