K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:   Kết quả so sánh 3 và căn 8là:

  A. 3 > \(\sqrt{8}\)        B. 3 < \(\sqrt{8}\)       C. 3 ≤ \(\sqrt{8}\)          D. \(\sqrt{3}\)\(\sqrt{8}\)

Câu 2. \(\sqrt{3x-2}\)  xác định khi và chỉ khi:

A.    x ≥ 0             B. x ≥ \(\dfrac{2}{3}\)              C. x ≥ \(\dfrac{3}{2}\)                D. \(\dfrac{2}{3}\)

Câu 3. \(\sqrt{\left(1-\sqrt{2}\right)^2}\)  bằng:

 A.  \(3-2\sqrt{2}\)      B.  \(1-\sqrt{2}\)           C.  \(\sqrt{2}-1\)           D. \(2\sqrt{2}+3\)

Câu 4. Kết quả của phép đưa thừa số ra ngoài dấu căn của biểu thức \(\sqrt{a^2b}\) (với a≥ 0; b ≥ 0) là:

            A.   \(-b\sqrt{a}\)         B.    \(b\sqrt{a}\)     C  .\(a\sqrt{b}\)            D.  \(-a\sqrt{b}\)

Câu 5. Khử mẫu của biểu thức \(\sqrt{\dfrac{2a}{b}}\)  (với a b cùng dấu) ta được:

   A.  \(\dfrac{\sqrt{2ab}}{a}\)         B.  \(\dfrac{\sqrt{2ab}}{b}\)        C.  \(\dfrac{\sqrt{2ab}}{-b}\)                D.  \(\dfrac{\sqrt{2ab}}{\left|b\right|}\)

Câu 6: Hàm số y =  \(\sqrt{5-m}.x+\dfrac{2}{3}\)là hàm số bậc nhất khi:

          A. m ≠ 5            B. m > 5             C. m < 5           D. m  = 5

Câu 7: Cho 3 đường thẳng (d1) : y = - 2x +1, (d2): y = x + 2, (d3) : y = 1 – 2x. Đường thẳng tạo với trục Ox góc nhọn là:

     A. (d1)          B. (d2)           C. (d3)             D. (d1) và (d3)

Câu 8:   Hai đường thẳng y = -3x +4  và y = (m+1)x +m  song song với nhau khi m bằng:

          A. 4                      B. -2                     C. -3                     D. -4

Câu 9. Hàm số bậc nhất nào sau đây nghịch biến?

   A. y =   \(7+\left(\sqrt{2}-3\right)x\)       B. y = \(4-\left(1-\sqrt{3}\right)x\)           C. y = \(-5-\left(1-\sqrt{2}\right)x\)            D. y = 4+ x

Câu 10. Cặp đường thẳng nào sau đây có vị trí trùng nhau?

     A. y=x +2 và  y= -x+2                   B. y= -3-2x và  y= -2x-3                

C. y= 2x -1 và  y= 2+3x                     D. y=1 – 2x và  y= -2x+3

Câu 11: Đường thẳng có phương trình x + y = 1 cắt đồ thị nào sau đây?

A.y+ x = -1           B. 2x + y = 1        C. 2y = 2 – 2x      D. 3y = -3x +1

Câu 12:  Cặp số (x; y) nào sau đây là một nghiệm của phương trình 2x – y = 1?

A.(1; -1)             B. ( -1; 1)                  C. (3;2)                D. (2; 3)

 

1

Câu 1: A

Câu 2: B

Câu 3: C

1 tháng 8 2017

a) \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\)

= \(\sqrt{\dfrac{6+2\sqrt{5}}{4x^2}}-\sqrt{\dfrac{6-2\sqrt{5}}{4}}=\sqrt{\dfrac{5+2\sqrt{5}+1}{4x^2}}-\sqrt{\dfrac{5-2\sqrt{5}+1}{4}}\) = \(\sqrt{\dfrac{\left(\sqrt{5}+1\right)^2}{\left(2x\right)^2}}-\sqrt{\dfrac{\left(\sqrt{5}-1\right)^2}{2^2}}=\dfrac{\left|\sqrt{5}+1\right|}{\left|2x\right|}-\dfrac{\left|\sqrt{5}-1\right|}{2}=\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\)

Thay x = 1 vào biểu thức \(\dfrac{\sqrt{5}+1}{2x}-\dfrac{\sqrt{5}-1}{2}\) ta được :

\(\dfrac{\sqrt{5}+1}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)

Vậy tại x =1 thì giá trị của biểu thức \(\sqrt{\dfrac{3+\sqrt{5}}{2x^2}}-\sqrt{\dfrac{3-\sqrt{5}}{2}}\) là bằng 1

b) \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\)

= \(\sqrt{\dfrac{a\left(a^2+4a+4\right)}{a\left(a^2-2ab+b^2\right)}}-\sqrt{\dfrac{b\left(b^2-4b+4\right)}{b\left(a^2-2ab+b^2\right)}}+ab\)

= \(\dfrac{\sqrt{\left(a+2\right)^2}}{\sqrt{\left(a-b\right)^2}}-\dfrac{\sqrt{\left(b-2\right)^2}}{\sqrt{\left(a-b\right)^2}}+ab=\dfrac{a+2}{a-b}-\dfrac{b-2}{a-b}+ab\) = a - b + ab

Thay a = 4 và b = 3 vào biểu thức a - b +ab ta được :

4 - 3 + 4.3 = 13

Vậy tại a = 4 ; b = 3 thì giá trị của biểu thức \(\dfrac{\sqrt{a^3+4a^2+4a}}{\sqrt{a\left(a^2-2ab+b^2\right)}}-\dfrac{\sqrt{b^3-4b^2+4b}}{\sqrt{b\left(a^2-2ab+b^2\right)}}+ab\) là bằng 13

c) \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab=ab^2.\dfrac{2}{ab^2}+ab=2+ab\)

Thay a = 1 và b = -2 vào BT : 2 + ab ta được :

2 + 1.(-2) = 2 + (-2) = 0

Vậy tại a = 1 ; b = -2 thì giá trị của biểu thức \(ab^2.\sqrt{\dfrac{4}{a^2b^4}}+ab\) là bằng 0

d) \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\) = \(\dfrac{a+b}{b^2}.\dfrac{\sqrt{a^2b^2}}{\sqrt{a^2+2ab+b^2}}=\dfrac{a+b}{b^2}.\dfrac{ab}{a+b}=\dfrac{ab}{b^2}\)

Thay a = 1 ; b =2 vào BT : \(\dfrac{ab}{b^2}\) ta được : \(\dfrac{1.2}{2^2}=\dfrac{1}{2}\)

Vậy tại a =1 ; b =2 GT của BT : \(\dfrac{a+b}{b^2}.\sqrt{\dfrac{a^2b^2}{a^2+2ab+b^2}}\)\(\dfrac{1}{2}\)

1 tháng 8 2017

@phynit

9 tháng 6 2017

a, \(ĐKXĐ:a;b>0;a\ne2b\\ \)

Xét: \(\dfrac{2\left(a+b\right)}{\sqrt{a^3}-2\sqrt{2b^3}}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{2\left(a+b\right)}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}-\dfrac{\sqrt{a}}{a+\sqrt{2ab}+2b}=\dfrac{a+2b+\sqrt{2ab}}{\left(\sqrt{a}-\sqrt{2b}\right)\left(a+\sqrt{2ab}+2b\right)}=\dfrac{1}{\sqrt{a}-\sqrt{2b}}\)\(\dfrac{\sqrt{a^3}+2\sqrt{2b^3}}{2b+\sqrt{2ab}}-\sqrt{a}=\dfrac{\left(\sqrt{a}+\sqrt{2b}\right)\left(a-\sqrt{2ab}+2b\right)}{\sqrt{2b}\left(\sqrt{a}+\sqrt{2b}\right)}-\sqrt{a}=\dfrac{\left(\sqrt{a}-\sqrt{2b}\right)^2}{\sqrt{2b}}\)\(\Rightarrow P=\dfrac{\sqrt{a}-\sqrt{2b}}{\sqrt{2b}}=\sqrt{\dfrac{a}{2b}}-1\)

b, Tự lm nhé.

9 tháng 3 2019

Căn bậc hai. Căn bậc ba

13 tháng 7 2018

b)CM: \(ab\sqrt{1+\dfrac{1}{a^2b^2}}-\sqrt{a^2b^2+1}=0\)

\(VT=ab\sqrt{\dfrac{a^2b^2+1}{\left(ab\right)^2}}-\sqrt{a^2b^2+1}\)

\(VT=ab\dfrac{\sqrt{a^2b^2+1}}{ab}-\sqrt{a^2b^2+1}\)

\(VT=\sqrt{a^2b^2+1}-\sqrt{a^2b^2+1}\)

\(VT=0=VP\)

1: ĐKXĐ: 2-3x>=0

=>x<=2/3

2: ĐKXĐ: -3x^2>=0

=>x^2<=0

=>x=0

3: ĐKXĐ: -2023x^3>=0

=>x^3<=0

=>x<=0

4: ĐKXĐ: -2(x-5)>=0

=>x-5<=0

=>x<=5

5: ĐKXĐ: -5/2-2x>=0

=>2-2x<0

=>2x>2

=>x>1

6: ĐKXĐ: (x^2+1)(3-2x)>=0

=>3-2x>=0

=>-2x>=-3

=>x<=3/2

7: ĐKXĐ: (-x^2-1)(3-x)>=0

=>(x^2+1)(x-3)>=0

=>x-3>=0

=>x>=3

10 tháng 4 2021

a, Để A nhận giá trị dương thì \(A>0\)hay \(x-1>0\Leftrightarrow x>1\)

b, \(B=2\sqrt{2^2.5}-3\sqrt{3^2.5}+4\sqrt{4^2.5}\)

\(=4\sqrt{5}-9\sqrt{5}+16\sqrt{5}=\left(4-9+16\right)\sqrt{5}=11\sqrt{5}\)

( theo công thức \(A\sqrt{B}=\sqrt{A^2B}\))

c, Với \(a\ge0;a\ne1\)

\(C=\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)

\(=\left(\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)^2\)

\(=\left(\sqrt{a}+1\right)^2.\frac{1}{\left(\sqrt{a}+1\right)^2}=1\)

Câu 1: Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x  ≥ 0, x ≠ 9.a) Tính giá trị của B khi x = 16;b) Rút gọn biểu thức M = A - B;c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)Câu 2:a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:Hai tổ sản xuất cùng làm chung một công việc thì sau 12...
Đọc tiếp

undefined

Câu 1: 

Cho các biểu thức A = \(\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\), với x  ≥ 0, x ≠ 9.

a) Tính giá trị của B khi x = 16;

b) Rút gọn biểu thức M = A - B;

c) Tìm x để M = \(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}.\)

Câu 2:

a) Tính thể tích một viên kẹo sô-cô-la hình cầu có đường kính bằng 3cm.

b) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình:

Hai tổ sản xuất cùng làm chung một công việc thì sau 12 giờ xong. Nếu tổ 1 làm một mình trong 2 giờ, tổ 2 làm một mình trong 7 giờ thì cả hai tổ làm xong một nửa công việc. Tính thời gian mỗi tổ làm một mình xong toàn bộ công việc.

Câu 3:

1. Cho phương trình \(x-\left(m+3\right)\sqrt{x}+m+2=0\left(1\right)\)

a) Giải phương trình (1) khi m  = - 4

b) Tìm m để phương trình (1) có hai nghiệm phân biệt.

2. Cho đường thẳng (d): y = (m - 1) + 4 (m ≠ 1). Đường thẳng (d) cắt Ox tại A, cắt Oy tại B. Tìm m để diện tích tam giác OAB bằng 2.

Câu 4:

Cho tam giác đều ABC nội tiếp đường tròn (O; R). Điểm M trên cung nhỏ AC. Hạ BK ⊥ AM tại K. Đường thẳng BK cắt tia CM tại E. Nối BE cắt đường tròn (O: R) tại N (N ≠ B).

a) Chứng minh tam giác MBE cân tại M;

b) Chứng minh EN.EB = EM.EC;

c) Tìm vị trí của M để tam giác MBE có chu vi lớn nhất.

Câu 5:

Giải hệ phương trình: \(\left\{{}\begin{matrix}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{matrix}\right.\)

 

Chúc các em ôn thi tốt!

6

Câu 1: 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

a) Thay x=16 vào B, ta được:

\(B=\dfrac{1}{\sqrt{16}-3}=\dfrac{1}{4-3}=1\)

Vậy: Khi x=16 thì B=1

b) Ta có: M=A-B

\(=\dfrac{x+3}{x-9}+\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}-3}\)

\(=\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x+3+2\sqrt{x}-6-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{x+3\sqrt{x}-2\sqrt{x}-6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)-2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)

c) Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow x-4=x-2\sqrt{x}-3\)

\(\Leftrightarrow-2\sqrt{x}-3=-4\)

\(\Leftrightarrow-2\sqrt{x}=-1\)

\(\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\)

hay \(x=\dfrac{1}{4}\)(thỏa ĐK)

Vậy: Để \(M=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\) thì \(x=\dfrac{1}{4}\)

Câu 2: 

b) Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)

thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)

(Điều kiện: x>12; y>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)

Vì khi tổ 1 làm trong 2 giờ, tổ 2 làm trong 7 giờ thì hai tổ hoàn thành được một nửa công việc nên ta có phương trình: \(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{60}\\y=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình

a: \(=\dfrac{\sqrt{m}\left(m+4n-4\sqrt{mn}\right)}{\sqrt{mn}\left(\sqrt{m}-2\sqrt{n}\right)}\)

\(=\dfrac{1}{\sqrt{n}}\cdot\left(\sqrt{m}-2\sqrt{n}\right)\)

b: \(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)

c: \(=\sqrt{5^2\cdot2\cdot x^2y^4\cdot xy}-\dfrac{2y^2}{x^2}\cdot4\sqrt{2}\cdot x^3\sqrt{xy}+\dfrac{3}{2}xy\cdot\sqrt{2}\cdot y\cdot\sqrt{xy}\)

\(=5xy^2\sqrt{2xy}-8\sqrt{2xy}xy^2+\dfrac{3}{2}xy^2\cdot\sqrt{2xy}\)

\(=-\dfrac{3}{2}\sqrt{2xy}\)

d: \(=\left(x+2\right)\cdot\dfrac{\sqrt{2x-3}}{\sqrt{x+2}}=\sqrt{\left(2x-3\right)\left(x+2\right)}\)

Bài 1: Thực hiện phép tính a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\) b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\) c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\) d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\) Bài 2: Rút gọn biểu thức sau \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\) Bài 3: Cho biểu thức...
Đọc tiếp

Bài 1: Thực hiện phép tính

a) \(\dfrac{1}{2}\sqrt{48}-\sqrt{32}-\sqrt{75}\)\(-\dfrac{1}{5}\sqrt{50}\)

b) \(\dfrac{3+\sqrt{3}}{3-\sqrt{3}}+\dfrac{3-\sqrt{3}}{3+\sqrt{3}}\)

c) \(4\sqrt{\dfrac{3}{2}}-\dfrac{5}{2}\sqrt{24}+\dfrac{1}{2}\sqrt{50}\)

d) \(\left(2\sqrt{5}+5\sqrt{2}\right).\sqrt{5}-\sqrt{250}\)

Bài 2: Rút gọn biểu thức sau

\(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) với \(a\ge0\)

Bài 3: Cho biểu thức sau

A=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-a}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{4-x}{2\sqrt{x}}\)với \(x>0\)\(x\ne4\)

a) Rút gọn A b) Tìm x để A=-3

Bài 4: Rút gọn biểu thức sau

A=\(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{1+\sqrt{x}}\right):\dfrac{1}{x-1}\) với \(x\ge0\)\(x\ne1\)

Bài 5: Cho biểu thức

C= \(\left(\dfrac{2+\sqrt{a}}{2-\sqrt{a}}-\dfrac{2-\sqrt{a}}{2+\sqrt{a}}-\dfrac{4a}{a-4}\right):\left(\dfrac{2}{2-\sqrt{a}}-\dfrac{\sqrt{a}+3}{2\sqrt{a}-a}\right)\)

a) Rút gọn C b) Timg giá trị của a để C>0 c) Tìm giá trị của a để C=-1

Bài 6: Giải phương trình

a) \(2\sqrt{3}-\sqrt{4+x^2}=0\\\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

c) \(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18x}=0\)

d) \(\sqrt{4\left(x+2\right)^2}=8\)

1
29 tháng 11 2022

Bài 6:

a: \(\Leftrightarrow\sqrt{x^2+4}=\sqrt{12}\)

=>x^2+4=12

=>x^2=8

=>\(x=\pm2\sqrt{2}\)

b: \(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>x+1=1

=>x=0

c: \(\Leftrightarrow3\sqrt{2x}+10\sqrt{2x}-3\sqrt{2x}-20=0\)

=>\(\sqrt{2x}=2\)

=>2x=4

=>x=2

d: \(\Leftrightarrow2\left|x+2\right|=8\)

=>x+2=4 hoặcx+2=-4

=>x=-6 hoặc x=2