Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
A=2(x2 -\(\frac{1}{2}\)x -\(\frac{1}{2}\))
=2(x2 - 2.\(\frac{1}{4}\)x + \(\frac{1}{16}\)- \(\frac{9}{16}\))
=2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\). Vì 2(x - \(\frac{1}{4}\))2 lớn hơn hoặc bằng 0
=> 2(x - \(\frac{1}{4}\))2 - \(\frac{9}{8}\)lớn hơn hoặc bằng - \(\frac{9}{8}\)
Vậy GTNN của a là - \(\frac{9}{8}\) khi x - \(\frac{1}{4}\)= 0 => x = \(\frac{1}{4}\)
Bài 1:
\(N=\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2017\)
\(=x^{2n}-2x^n+x^n-2-x^{2n}+x^n+2017\)
\(=2017\)
\(\Rightarrowđpcm\)
Bài 2:
\(A=-2\left(n+1\right)+n\left(2n-3\right)\)
\(=-2n^2-2n+2n^2-3n\)
\(=-5n⋮5\forall n\in Z\)
\(\Rightarrowđpcm\)
Bài 3:
\(A=x^8-2017x^7+2017x^6-2017x^5+...-2017x+2017\)
\(=x^8-2016x^7-x^7+2016x^6+x^6-2016x^5-x^5+2016x^4+...-2016x-x+2016+1\)
\(=x^7\left(x-2016\right)-x^6\left(x-2016\right)+x^5\left(x-2016\right)-x^4\left(x-2016\right)+...-\left(x-2016\right)+1\)
\(=\left(x^7-x^6+x^5-x^4+...-1\right)\left(x-2016\right)+1\)
Thay x = 2016
\(\Rightarrow A=1\)
Vậy A = 1 khi x = 2016
câu 2 : x^2-6x+9+y^2+10y+25+(4z-1)^2=0
(y+5)^2=0 => y=-5