Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1 + x = 0
b) x + x2 = 0
c) 1 - 2t = 0
d) 3y = 0
e) 0x - 3 = 0
f) (x2 + 1)(x - 1) = 0
g) 0,5x - 3,5x = 0
h) -2x2 + 5x = 0
a, 1 + x = 0
Ta có: a = 1; b = 1 với a \(\ne\) 0
nên ta có: 1x + 1 = 0 (a \(\ne\) 0)
Vậy 1 + x = 0 là phương trình bậc nhất một ẩn
b, x + x2 = 0
Phương trình bậc nhất một ẩn có dạng ax + b = 0 với a \(\ne\) 0 nên:
\(\Rightarrow\) x + x2 = 0 ko là phương trình bậc nhất một ẩn
c, 1 - 2t = 0
\(\Leftrightarrow\) t = \(\frac{1}{2}\)
Có a = -2; b = 1 với a \(\ne\) 0
Vậy 1 - 2t = 0 là phương trình bậc nhất một ẩn
d, 3y = 0
\(\Leftrightarrow\) 3y + 0 = 0 với a = 3; b = 0 với a \(\ne\) 0
Vậy 3y = 0 là phương trình bậc nhất một ẩn
e, 0x - 3 = 0
Ta có: a = 0; b = -3 và a = 0
Vậy 0x - 3 = 0 ko là phương trình bậc nhất một ẩn
f, (x2 + 1)(x - 1) = 0
\(\Leftrightarrow\) x3 - x2 + x - 1 = 0
\(\Leftrightarrow\) x(x2 - x + 1) - 1 = 0
Ta có a = x2 - x + 1 ko phải là số đã cho và b = -1
Vậy (x2 + 1)(x - 1) = 0 ko là phương trình bậc nhất một ẩn
g, 0,5x - 3,5x = 0
\(\Leftrightarrow\) x(0,5 - 3,5) = 0
\(\Leftrightarrow\) -3x = 0
\(\Leftrightarrow\) -3x + 0 = 0 có a = -3 và b = 0 với a \(\ne\) 0
Vậy 0,5x - 3,5x = 0 là phương trình bậc nhất một ẩn
h, -2x2 + 5x = 0
\(\Leftrightarrow\) x(-2x + 5) = 0
\(\Leftrightarrow\) x(-2x + 5) + 0 = 0
Ta có: a = -2x + 5 ko phải là số đã cho
Vậy -2x2 + 5x = 0 ko là phương trình bậc nhất một ẩn
Chúc bn học tốt!!
Phương trình dạng ax+ b= 0, với a, b là hai số đã cho và a ≠ 0 , được gọi là phương trình bậc nhất một ẩn.
+ Phương trình 1 + x = 0 là phương trình bậc nhất với a = 1 ; b = 1.
+ Phương trình x + x2 = 0 không phải phương trình bậc nhất vì có chứa x2 bậc hai.
+ Phương trình 1 – 2t = 0 là phương trình bậc nhất ẩn t với a = -2 và b = 1.
+ Phương trình 3y = 0 là phương trình bậc nhất ẩn y với a = 3 và b = 0.
+ Phương trình 0x – 3 = 0 không phải phương trình bậc nhất vì hệ số bậc nhất a = 0.
Bài 1:
a) (5x-4)(4x+6)=0
\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)
b) (x-5)(3-2x)(3x+4)=0
<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0
<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)
c) (2x+1)(x2+2)=0
=> 2x+1=0 (vì x2+2>0)
=> x=\(\frac{-1}{2}\)
bài 1:
a) (5x - 4)(4x + 6) = 0
<=> 5x - 4 = 0 hoặc 4x + 6 = 0
<=> 5x = 0 + 4 hoặc 4x = 0 - 6
<=> 5x = 4 hoặc 4x = -6
<=> x = 4/5 hoặc x = -6/4 = -3/2
b) (x - 5)(3 - 2x)(3x + 4) = 0
<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0
<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4
<=> x = 5 hoặc -2x = -3 hoặc 3x = -4
<=> x = 5 hoặc x = 3/2 hoặc x = 4/3
c) (2x + 1)(x^2 + 2) = 0
vì x^2 + 2 > 0 nên:
<=> 2x + 1 = 0
<=> 2x = 0 - 1
<=> 2x = -1
<=> x = -1/2
bài 2:
a) (2x + 7)^2 = 9(x + 2)^2
<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36
<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0
<=> -5x^2 - 8x + 13 = 0
<=> (-5x - 13)(x - 1) = 0
<=> 5x + 13 = 0 hoặc x - 1 = 0
<=> 5x = 0 - 13 hoặc x = 0 + 1
<=> 5x = -13 hoặc x = 1
<=> x = -13/5 hoặc x = 1
b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)
<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20
<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0
<=> -5x^3 - 2x^2 + 17x - 14 = 0
<=> (-x + 1)(x + 2)(5x - 7) = 0
<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0
<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7
<=> x = 1 hoặc x = -2 hoặc 5x = 7
<=> x = 1 hoặc x = -2 hoặc x = 7/5
\(\text{a) (5x+2)(x-7)=0}\)
\(\Leftrightarrow\orbr{\begin{cases}5x+2=0\\x-7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{5}\\x=7\end{cases}}\)
Vậy ...
#Thảo Vy#
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
Lời giải:
Các pt bậc nhất là: $a, c, d, g$