Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{25-\dfrac{1}{11}+\dfrac{4}{13}-\dfrac{4}{15}}{50-\dfrac{2}{11}+\dfrac{8}{13}-\dfrac{8}{15}}\)
\(=\dfrac{25-\dfrac{1}{11}+\dfrac{4}{13}-\dfrac{4}{15}}{2\left(25-\dfrac{1}{11}+\dfrac{4}{13}-\dfrac{4}{15}\right)}=\dfrac{1}{2}\)
\(-2\dfrac{1}{4}.\)\(\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
=\(\dfrac{-9}{4}\).\(\left(\dfrac{41}{12}-\dfrac{11}{9}\right)\)
=\(\dfrac{-9}{4}.\dfrac{41}{12}-\dfrac{-9}{4}.\dfrac{11}{9}\)
=\(\dfrac{-123}{16}-\dfrac{-11}{4}\)
=\(\dfrac{-123}{16}-\dfrac{-44}{16}\)
=\(\dfrac{-79}{16}\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right)\div\left(-2\dfrac{1}{8}\right)\)
=\(\left(\dfrac{-1}{4}+\dfrac{3}{4}+\dfrac{7}{12}\right)\div\left(\dfrac{-17}{8}\right)\)
=\(\left(\dfrac{-3}{12}+\dfrac{9}{12}+\dfrac{7}{12}\right).\dfrac{-8}{17}\)
=\(\dfrac{13}{12}.\dfrac{-8}{17}=\dfrac{-26}{51}\)
A không chia hết cho 3 vì nếu muốn 1 tổng chia hết cho 1 số thì các số hạng trong tổng đó cũng phải chia hết cho số đó
Nên 2 và 1 vài số khác cũng ko chia hết cho 3 nên tổng a ko chia hết cho 3
=> A không chia hết 3
A= (2+2^2)+...+(2^9+2^10)
A= 2.(1+2) +...+ 2^9.(1+2)
A= 2.3+...+ 2^9.3 chia hết cho 3
KẾT QUẢ = 700
Bạn tính ở tử số trước
0,18 x 1230 + 0,9 x 1567 x 2 + 3 x 5310 x 0,6
= ( 0,18 x 10) x 123 + (0,9 x 2) x 156 + (3 x 0,6) x 5310
= 1,8 x 123 + 1,8 x 1567 + 1,8 x 5310
= 1,8 x (123 + 1567 +5310)
= 1,8 x 7000
= 12600
rồi tính mẫu số
SSH : (55-1) : 3 + 1 = 19
Tổng : (55+1) x 19 : 2 = 532
532-514 = 18
Lúc này được kết quả là 12600/18 , ta rút gọn : 12600:18 = 700
xét tử số ;
0,18*1230+0,9*4567*2+3*5310*0,6
=(0,18*10)*123+(0,9*2)*4567+(3*0,6)*5310
=1,8*123+1,8*4567+1,8*5310
=1,8*(1230+4567+5310)
=1.8*10000
=18000
Xét mẫu số:
k/c giữa 2 số là 4-1=3
Số các số hạng là (55-1):3+1=19
Tổng của dãy số la (55-1)*19:2-514=18
-> 18000/18=1000/1=1000
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
Câu 2:
a: a=2007 nên a+1=2008
\(M=a^{11}-a^{10}\left(a+1\right)+a^9\left(a+1\right)-...-a^2\left(a+1\right)+a\left(a+1\right)\)
\(=a^{11}-a^{11}-a^{10}+a^{10}+a^9-...-a^3-a^2+a^2+a\)
=a=2007
b: a=2004 nên a-1=2003
\(N=a^{11}-a^{10}\left(a-1\right)-a^9\left(a-1\right)-...-a\left(a-1\right)-1004\)
\(=a^{11}-a^{11}+a^{10}-a^{10}+a^9-...-a^2+a-1004\)
=a-1004=1000
\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=2^8=256\)
chỉ cách tính hay là có cần tính kết quả luôn k bn