K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

Đề thi học kì môn Hóa gồm 2 phần trắc nghiệm và tự luận. Trong ngân hàng đề thi có 10 đề trắc nghiệm và 8 đề tự luận. Vậy có bao nhiêu cách ra đề

Câu 2: Từ một đội công tác gồm 20 người cần cử ra một ban lãnh đạo gồm 1 đội trưởng, 1 đội phó, 1 kế toán. Hỏi có bao nhiêu cách cử?

Câu 3: Một hộp đựng có 10 viên bi trắng, 8 viên bi xanh và 2 viên bi đỏ. Một em bé muốn chonj1 viên bi để chơi. Hỏi có bao nhiêu cách chọn?

Câu 4: Từ tahnfh phố A đến thành phố B có thể đi bằng một trong các loại phương tiện đó là xe khách, tàu thủy hoặc máy bay. Giả sử có 10 chiếc xe khách, 6 chiếc tàu thủy,  và 4 chiếc máy bay.Hỏi có tất cả bao nhiêu cách để đi từ thành phố A đến thành phố B

Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?

Câu 6: Trong một trường THPT, khối 10 có 200 học sinh nam và 250 học sinh nữ

a) Có bao nhiêu cách chọn một học sinh ở khối 10 đi dự đại hội

b) Có bao nhiêu cách chọn 2 học sinh đi dự đại hội trong đó có 1 nam và 1 nữ

Câu 7: Chợ Bến Thành có 4 cổng ra và vào. Hỏi một người đi chợ:

a) Có mấy vách vào và ra chợ?

b) Có mấy vách vào và ra chợ bằng 2 cổng khác nhau?

Câu 8: Từ các số: 1,2,3,4,5,6,7. Có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau trong đó:

a) Chữ số đầu tiên là 6

b) Chữ số tận cùng không phải là 6

Câu 9: Xét các số tự nhiên gồm 5 chữ số khác nhau lập nên từ các chữ số 2,3,4,5,6.Hỏi trong đó có bao nhiêu số:

a)Bắt đầu bằng 23

b)Không bắt đầu bằng 2

c) Không bắt đầu bằng 246

 

 

1
15 tháng 1 2024

Câu 5: Trong trường THPT, khối 10 có 180 học sinh tham gia CLB toán học, 120 học sinh tham gia CLB ngoại ngữ, 50 học sinh tham gia cả 2 CLB và 100 học sinh không tham gia CLB nào.Hỏi khối 10 trường THPT đó có bao nhiêu học sinh?

Bài làm:

Số HS K10 chỉ tham gia 1 CLB - CLB Toán:

180 - 50 = 130 (HS)

Số HS K10 chỉ tham gia 1 CLB - CLB Ngoại ngữ:

120 - 50 = 70 (HS)

K10 trường đó có số HS là:

130 + 70 + 50 + 100 = 350 (HS)

Đ.số: 350 HS

n(omega)=\(C^7_{18}\)

\(n\left(\overline{A}\right)=C^7_{13}+C^7_{11}+C^7_{12}\)

=>\(P\left(A\right)=1-\dfrac{2838}{31824}=\dfrac{4831}{5304}\)

2 tháng 5 2023

 Số cách chọn 7 em bất kì trong ba khối:  \(C|^7_{18}=31824\) (cách)

- Số cách chọn 7 em đi trong 1 khối:

                \(C^7_7=1\) (cách)

- Số cách chọn 7 em đi trong 2 khối:

+) 7 em trong khối 12 và 11:

       \(C^7_{13}-C^7_7=1715\) (cách)

+) 7 em trong khối 12 và 10:

       \(C^7_{12}-C^7_7=791\) (cách)

+) 7 em trong khối 11 và 10:

      \(C^7_{11}=330\) (cách)

 Số cách chọn 7 em đi có cả ba khối:

       31824 - 1 -1715 -  791 - 330 = 28987(cách)

25 tháng 8 2019

16 Tuồng 10 Cải Lương 5

Như vậy tổng số ng là :16-5+10+10=31 ng

Bài 1: Để thành lập đội tuyển học sinh giỏi khối 10, nhà trường tổ chức thi chọn ba môn Toán, Văn,Anh trên tổng số 150 học sinh. Kết quả có 80 học sinh giỏi Toán, 70 học sinh giỏi Văn, 60 họcsinh giỏi Anh, 25 học sinh chỉ giỏi Toán và Văn, 20 học sinh chỉ giỏi Văn và Anh, 18 học sinhchỉ giỏi Toán và Anh, 5 học sinh giỏi cả ba môn. Hỏi có bao nhiêu học sinh không đạt yêu cầu?A. 9 .         ...
Đọc tiếp

Bài 1: Để thành lập đội tuyển học sinh giỏi khối 10, nhà trường tổ chức thi chọn ba môn Toán, Văn,
Anh trên tổng số 150 học sinh. Kết quả có 80 học sinh giỏi Toán, 70 học sinh giỏi Văn, 60 học
sinh giỏi Anh, 25 học sinh chỉ giỏi Toán và Văn, 20 học sinh chỉ giỏi Văn và Anh, 18 học sinh
chỉ giỏi Toán và Anh, 5 học sinh giỏi cả ba môn. Hỏi có bao nhiêu học sinh không đạt yêu cầu?
A. 9 .                B.18 .                  C. 81.         D. 13 .

Bài 2: Có 60 đoàn viên đăng kí tham gia hội thi thể thao mừng ngày thành lập Đoàn TNCS Hồ Chí
Minh trong đó ban chấp hành đã chọn ra 30 đoàn viên thi cầu lông, 25 đoàn viên thi bóng bàn,
10 đoàn viên thi cả cầu lông và bóng bàn. Hỏi có bao nhiêu đoàn viên không được tham gia dự
thi?
A. 15.               B. 20 .                C. 25.           D. 45 .

MÌNH ĐANG CẦN GẤP. CẢM ƠN MỢI NGƯỜI! 

0
HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Số cách chọn 1 bạn từ nhóm 15 bạn là tổ hợp chập 1 của 15 \(C_{15}^1 = 15\) cách

b) Việc chọn 3 thành viên của nhóm đang học ở ba lớp khác nhau gồm 3 công đoạn:

Công đoạn 1: Chọn 1 bạn từ lớp 10A có 4 cách

Công đoạn 2: Chọn 1 bạn từ lớp 10B có 5 cách

Công đoạn 3: Chọn 1 bạn từ lớp 10C có 6 cách

Áp dụng quy tắc nhân, ta có \(4.5.6 = 120\) cách chọn 3 thành viên của nhóm đang học ở ba lớp khác nhau

c) Việc chọn 2 thành viên của nhóm đang học ở hai lớp khác nhau có 3 trường hợp:

TH1: 2 bạn đang học ở lớp 10A và 10B có \(4.5 = 20\) cách

TH2: 2 bạn đang học ở lớp 10A và 10C có \(4.6 = 24\) cách

TH3: 2 bạn đang học ở lớp 10C và 10B có \(6.5 = 30\) cách

 Áp dụng quy tắc cộng, ta có \(20 + 24 + 30 = 74\) cách chọn 2 thành viên của nhóm đang học ở hai lớp khác nhau

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số cách chọn ba học sinh bất kì là: \(C_{40}^3 = 9880\)

b)    Số cách chọn ba học sinh gồm 1 nam và 2 nữ là: \(C_{25}^1.C_{15}^2 = 2625\)

c)     Số cách chọn 3 học sinh trong đó không có học sinh nam là: \(C_{15}^3 = 455\)

Số cách chọn 3 học sinh trong đó có ít nhất một học sinh nam là: \(9880 - 455 = 9425\)

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Số cách chọn 2 trong 20 câu lí thuyết là:  \(C_{20}^2\)

Số cách chọn ra 3 trong 40 câu bài tập là: \(C_{40}^3\)

=> Số cách lập đề thi gồm 5 câu hỏi như trên là:  \(C_{20}^2.C_{40}^3 = 1877200\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

+) Số cách chọn 3hs bất kì trong 34hs là: \(C_{34}^3\) ( cách chọn)

+) Số cách chọn 3hs nam trong 34hs là: \(C_{18}^3\) ( cách chọn)

+) Số cách chọn 3hs nữ trong 34hs là: \(C_{16}^3\) ( cách chọn)

+) Số cách chọn 3hs gồm cả nam và nữ trong 34hs là: \(C_{34}^3 - C_{18}^3 - C_{16}^3 = 4608\) ( cách chọn)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Việc chọn một học sinh đi dự buổi giao lưu là thực hiện một trong hai hoạt động sau:

Chọn một học sinh nam: Có 245 cách chọn.

Chọn một học sinh nữ: Có 235 cách chọn.

Vậy có 245 +235 cách chọn một học sinh đi dự buổi giao lưu.

b) Việc chọn hai học sinh đi dự trại hè cần thực hiện liên tiếp hai hoạt động sau:

Chọn một học sinh nam: Có 245 cách chọn.

Chọn một học sinh nữ: Có 235 cách chọn.

Vậy có 245.235=57575 cách chọn hai học sinh đi dự trại hè.

Chú ý

Câu b: ta có thể thay đổi thứ tự thực hiện là: chọn một học sinh nữ, sau đó chọn 1 học sinh nam.

27 tháng 9 2023

a) Để chọn một học sinh ở khối 10 đi dự buổi giao lưu, ta thực hiện một trong hai hành động sau:

+ Chọn một học sinh nam: Có 245 cách chọn.

+ Chọn một học sinh nữ: Có 235 cách chọn.

Vậy nhà trường có 245 + 235 = 480 cách chọn một học sinh.

b) Để chọn hai học sinh, trong đó có 1 nam và 1 nữ đi dự trại hè, ta thực hiện hai hành động liên tiếp: chọn một học sinh nam và chọn một học sinh nữ.

+ Chọn một học sinh nam: Có 245 cách chọn.

+ Chọn một học sinh nữ: Có 235 cách chọn

Vậy nhà trường có 245 . 235 = 57 575 cách chọn hai học sinh 1 nam và 1 nữ.