K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

c. Thay x = -1 vào A(x) và B(x) ta có:

A(-1) = 0, B(-1) = 2

Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)

21 tháng 3 2022

giúp với

23 tháng 3 2022

a.\(P\left(x\right)=1+3x^5-4x^2+x^5+x^3-x^2+3x^3\)

            \(=1-5x^2+4x^3+4x^5\)

   \(Q\left(x\right)=2x^5-x^2+4x^5-x^4+4x^2-5x\)

           \(=-5x+3x^2+3x^4+2x^5\)

b.\(P\left(x\right)+Q\left(x\right)=1-5x^2+4x^3+4x^5-5x+3x^2+3x^4+2x^5\)

                          \(=6x^5+3x^4+4x^3-2x^2-5x+1\)

   \(P\left(x\right)-Q\left(x\right)=1-5x^2+4x^3+4x^5+5x-3x^2-3x^4-2x^5\)

                           \(=2x^5-3x^4+4x^3-8x^2+5x+1\)

c.\(P\left(x\right)+Q\left(x\right)=6x^5+3x^4+4x^3-2x^2-5x+1\)

 \(x=-1\)

\(P\left(x\right)+Q\left(x\right)=6.\left(-1\right)^5+3.\left(-1\right)^4+4.\left(-1\right)^3-5.\left(-1\right)+1\)

                       \(=-6+3-4+5+1=-1\)

d.\(Q\left(0\right)=\)\(-5x+3x^2+3x^4+2x^5\)

            \(=0\)

\(P\left(0\right)=\)\(1-5x^2+4x^3+4x^5\)

            \(=1\)

Vậy x=0 ko là nghiệm của đa thức P(x)

27 tháng 4 2022

thu gọn rồi chứng minh nó > 0

20 tháng 5 2021

Cho A(x) = 0, có:

x2 - 4x = 0

=> x (x - 4) = 0

=> x = 0 hay x - 4 = 0

=> x = 0 hay x = 4

Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)

20 tháng 5 2021

x4+x3+x+1 = x3. (x+1) + (x+1) = (x3 + 1)(x+1) = (x+1)2.(x2 - x +1) = 0

=> x + 1 = 0 => x = -1

Vì x2 - x + 1 = (x2 - 2.x .1/2 + 1/4) + 3/4 = (x - 1/2)2 + 3/4 >0 + 3/4 = 3/4

Vậy đa thức trên có nghiệm là x = -1

24 tháng 4 2022

a) Thu gọn:

P(x) = x4+(-7x2+4x2)+(x+6x)-2x3-2

P(x) = x4-3x2+7x-2x3-2

Sắp xếp: P(x) = x4-2x3-3x2+7x-2

Thu gọn:

Q(x) = x4+(-3x+x)+(-5x3+6x3)+1

Q(x) = x4-2x+x3+1

Sắp xếp: Q(x)= x4x3-2x+1

b/ Nếu x=2, ta có:

P(2) = 24-2.23-3.22+7.2-2

        = 16 - 2.8 - 3.4 + 14 -2

        = 16-16-12+14-2

        = -12+14-2 

        = 0

=> x=0 là nghiệm của P(x)

Q(2)= 24+ 23-2.2+1

= 16+8-4+1

= 24-4+1

=21

mà 21≠0

Vậy: x=2 không phải là nghiệm của Q(x)

=>

 

1 tháng 5 2019

a) \(P\left(x\right)=3x^3-x^2-2x^4+3+2x^3+x+3x^4-x^2-2x^4+3+2x^3+x+3x^4\)

 \(=2x^4+7x^3-2x^2+2x+6\)

\(Q\left(x\right)=-x^4+x^2-4x^3-2+2x^2-x-x^3-x^4+x^2-4x^3-2+2x^2-x-x^3\)

\(=-2x^4-10x^3+6x^2-2x-4\)

b) \(P\left(x\right)+Q\left(x\right)=2x^4+7x^3-2x^2+2x+6-2x^4-10x^3+6x^2-2x-4\)

                                      \(=-3x^3+4x^2+2\)