Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bất phương trình a), b), c) là các bất phương trình bậc nhất hai ẩn.
Bất phương trình d) không là bất phương trình bậc nhất hai ẩn vì có chứa \({y^2}.\)
Bất phương trình bậc nhất 2 ẩn :
\(2x+3y>0\Rightarrow Câu\) \(C\)
\(x-2y\le1\Rightarrow Câu\) \(f\)
\(4\left(x-1\right)+5\left(y-3\right)>2x-9\)
\(\Leftrightarrow4x-4+5y-15-2x+9>0\)
\(\Leftrightarrow2x+5y-10>0\) \(\Rightarrow Câu\) \(i\)
Câu a (-7;1)
Thay (-7;1) vào pt,ta có:
2.(-7) - 3.1 - 1 < 0
(=) -18<0
=> (-7;1) là nghiệm của bpt
\(2x-3y-1< 0\left(d\right)\)
\(\left(-7;1\right)\in\left(d\right)\Leftrightarrow2.\left(-7\right)-3.1-1=-18< 0\left(đúng\right)\)
\(\left(0;-2\right)\in\left(d\right)\Leftrightarrow2.0-3.\left(-2\right)-1=5< 0\left(sai\right)\)
\(\rightarrow Chọn\) \(a\)
a) Thay \(x = 0,y = - 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.0 - 3.\left( { - 1} \right) < 3 \Leftrightarrow 3 < 3\) (Vô lý)
Vậy \(\left( {0; - 1} \right)\) không là nghiệm.
b) Thay \(x = 2,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.2 - 3.1 < 3 \Leftrightarrow 1 < 3\) (Luôn đúng)
Vậy \(\left( {2;1} \right)\) là nghiệm.
c) Thay \(x = 3,y = 1\)vào bất phương trình \(2x - 3y < 3\) ta được:
\(2.3 - 3.1 < 3 \Leftrightarrow 3 < 3\) (Vô lý)
Vậy \(\left( {3;1} \right)\) không là nghiệm.
Đáp án D là đáp án đúng
Thế tọa độ O lần lượt vào các đáp án thì A: \(2\le0\) (sai), B: \(2\le0\) (sai), C:\(-2\ge0\) (sai)
D: \(2\ge0\) (đúng)
a) 2x+3y>6 là bất phương trình bậc nhất hai ẩn với a=2, b=3, c=6
b) \({2^2}x + y \le 0 \Leftrightarrow 4x + y \le 0\) là bất phương trình bậc nhất hai ẩn với a=4, b=1, c=0
c) \(2{x^2} - y \ge 1\) có bậc của x là 2 nên đây không là bất phương trình bậc nhất hai ẩn.
Phải là dấu ngoặc nhọn chứ=0
\(\left\{{}\begin{matrix}2x+3y-6< 0\\x\ge0\\2x-3y-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6\le2x+3y-6< 0\\x\ge0\\-3y-1\le2x-3y-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3y-6< 0\\-3y-1\le0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y< 2\\y\ge-\dfrac{1}{3}\\x\ge0\end{matrix}\right.\)
=> Miền nghiệm là \([0;2)\)
Thay tọa độ các điểm vào từng bất phương trình ta thấy, điểm (-1 ; 1) thỏa mãn cả hai bất phương trình : - 1 + 3 . 1 - 2 ≥ 0 ; 2 . - 1 + 1 + 1 ≤ 0
Do đó, điểm (-1; 1) thuộc miền nghiệm của bất phương trình đã cho.
Chọn B
Thay tọa độ các điểm vào từng bất phương trình ta thấy, điểm (-1 ; 1) thỏa mãn cả hai bất phương trình :
-1 + 3.1 - 2 ≥ 0; 2.(-1) + 1 + 1 ≤ 0
Do đó, điểm (-1; 1) thuộc miền nghiệm của bất phương trình đã cho.
Ta có : 2- 3 < 0.
Do đó, cặp số (2 ; 3) là nghiệm của bất phương trình x- y < 0.
Chọn B