K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

ĐK: \(x^2-4x-12\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge6\\x\le-2\end{matrix}\right.\)

\(\sqrt{x^2-4x-12}\le x-4\)

<=> \(\left\{{}\begin{matrix}x-4\ge0\\x^2-4x-12\le x^2-8x+16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x\le7\end{matrix}\right.\Leftrightarrow4\le x\le7\)

Đối chiếu đk ta có: \(6\le x\le7\)

Vậy S = [ 6;7]

24 tháng 4 2020

căn x2 - 8x >= 2(x+1) giúp mình câu này

AH
Akai Haruma
Giáo viên
22 tháng 11 2021

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.

NV
1 tháng 6 2020

a/ ĐKXĐ: \(1\le x\le5\)

- Với \(4< x\le5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\le4\) hai vế ko âm, bình phương:

\(-x^2+6x-5>64-32x+4x^2\)

\(\Leftrightarrow5x^2-38x+69< 0\) \(\Rightarrow3< x< \frac{23}{5}\)

Vậy nghiệm của BPT là: \(3< x\le5\)

b/ ĐKXĐ: \(\left[{}\begin{matrix}x\le-5\\x\ge-\frac{4}{3}\end{matrix}\right.\)

- Với \(x< 1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT vô nghiệm

- Với \(x\ge1\) hai vế ko âm, bình phương:

\(\left(x+5\right)\left(3x+4\right)< 16\left(x-1\right)^2\)

\(\Leftrightarrow13x^2-51x-4>0\)

\(\Rightarrow x>4\)

26 tháng 11 2022

a: ĐKXĐ của A là x<>1; x<>-3

ĐKXĐ của B là x<>4

ĐKXĐ của C là x<>0; x<>2

ĐKXĐ của D là x<>3

ĐKXĐ của E là x<>0; x<>2

b: \(A=\dfrac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x}{x-1}\)

Để A=0 thì 2x=0

=>x=0

\(B=\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)^2}=\dfrac{x+4}{x-4}\)

Để B=0 thì x+4=0

=>x=-4

\(C=\dfrac{x\left(x+2\right)}{x\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Để C=0 thì x+2=0

=>x=-2

\(D=\dfrac{\left(x+4\right)\left(x-3\right)}{\left(x-3\right)\left(x^2+3x+9\right)}=\dfrac{x+4}{x^2+3x+9}\)

Để D=0 thi x+4=0

=>x=-4
\(E=\dfrac{2x\left(x^2+2x+1\right)}{2x\left(x-2\right)}=\dfrac{\left(x+1\right)^2}{x-2}\)

Để E=0 thì (x+1)^2=0

=>x=-1

16 tháng 1 2018

Đáp án: D

(x2 - 4) (x2 - 1) = 0  x = ±2; x =  ±1 nên A = {-2; -1; 1; 2}

(x2 - 4) (x2 + 1) = 0  x2 - 4 = 0 ⇔ x = ±2 nên B = {-2;  2}

x4 - 5x2 + 4)/x = 0  x4 - 5x2 + 4 = 0 ⇔ x = ±2; x =  ±nên D = {-2; -1; 1; 2}

=> A = D

19 tháng 1 2022

a, \(\left(x-3\right)\left(x^2+x-20\right)\ge0\)

\(\Leftrightarrow\) \(\left(x-3\right)\left(x-4\right)\left(x+5\right)\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x+5=0\Leftrightarrow x=-5\)

+) Lập trục xét dấu f(x) (Bạn tự kẻ trục nha)

\(\Rightarrow\) Bpt có tập nghiệm S = \(\left[-5;3\right]\cup\) [4; \(+\infty\))

b, \(\dfrac{x^2-4x-5}{2x+4}\ge0\)

\(\Leftrightarrow\) \(\dfrac{\left(x-5\right)\left(x+1\right)}{2x+4}\ge0\)

+) \(x-5=0\Leftrightarrow x=5\)\(x+1=0\Leftrightarrow x=-1\)\(2x+4=0\Leftrightarrow x=-2\)

+) Lập trục xét dấu f(x) 

\(\Rightarrow\) Bpt có tập nghiệm S = (-2; -1] \(\cup\) [5; \(+\infty\))

c, \(\dfrac{-1}{x^2-6x+8}\le1\)

\(\Leftrightarrow\) \(\dfrac{\left(x-3\right)^2}{\left(x-4\right)\left(x-2\right)}\ge0\)

+) \(x-3=0\Leftrightarrow x=3\)\(x-4=0\Leftrightarrow x=4\)\(x-2=0\Leftrightarrow x=2\)

+) Lập trục xét dấu f(x)

\(\Rightarrow\) Bpt có tập nghiệm S = (\(-\infty\); 2) \(\cup\) (4; \(+\infty\))

Chúc bn học tốt!