K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)

16 tháng 8 2020

acâu a bạn cho 2 cái căn ở cuối làm j thế

hiệu bằng 0 rồi mà?

16 tháng 8 2020

A = (x+ căn x^2+2013).(y+ căn y^2+2013) =2013

=> (x+ căn x^2+2013) .(x- căn x^2+2013).(y+ căn y^2+2013) phần (x- căn x^2+2013) =2013

=> -2013 . (y+ căn y^2+2013) phần (x+ căn x^2+2013) = 2013

=> -y  - (y+ căn y^2+2013 ) = x - (x+ căn x^2+2013)   (1)

      -x  - (x+ căn x^2+2013) = y - (y+ căn y^2+2013)    (2)

tu (1) va (2) => x + y = 0

26 tháng 11 2017

\(2-\sqrt{x}-3x=0\)\(ĐKXĐ:x\ge0\)

\(\Leftrightarrow3x+\sqrt{x}-2=0\)

\(\Leftrightarrow\left(3x+3\sqrt{x}\right)-\left(2\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(3\sqrt{x}-2\right)=0\)

Mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1>0\)\(\forall x\ge0\)

\(\Rightarrow3\sqrt{x}-2=0\)

\(\Leftrightarrow\sqrt{x}=\frac{2}{3}\)

\(\Leftrightarrow x=\frac{4}{9}\)(thỏa mãn ĐKXĐ)

Vậy phương trình có tập nghiệm \(S=\left\{\frac{4}{9}\right\}\)

23 tháng 10 2016

\(1\left(\sqrt{2}+1\right)\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(5-2\sqrt{2}-\sqrt{3}\right)\)

\(=1\left(\sqrt{3}+1\right)\left(\sqrt{6}+1\right)\left(1+3\sqrt{2}-\sqrt{6}-\sqrt{3}\right)\)

\(=1\left(\sqrt{6}+1\right)\left(2\sqrt{6}-2\right)\)

\(=2\left(\sqrt{6}-1\right)\left(\sqrt{6}+1\right)=10\)

Cứ nhân lần lược vào rồi rút gọn sẽ được như trên

22 tháng 10 2016

Đọc cái đề giống như muốn hack não quá. Ghi rõ đi bạn

6 tháng 8 2017

a)Đặt \(\hept{\begin{cases}\sqrt{x+2}=a\\\sqrt{4-x}=b\end{cases}\left(a,b>0\right)}\) thì ta có;

\(a-b+ab+3=0\)

\(\Leftrightarrow a-b+ab-1=-4\)

\(\Leftrightarrow b\left(a-1\right)+\left(a-1\right)=-4\)

\(\Leftrightarrow\left(b+1\right)\left(a-1\right)=-4\)

Xét Ư(-4) giải pt ta có \(\hept{\begin{cases}a=-3\\b=0\end{cases}};\hept{\begin{cases}a=-1\\b=1\end{cases}};\hept{\begin{cases}a=0\\b=3\end{cases}};\hept{\begin{cases}a=2\\b=-5\end{cases}};\hept{\begin{cases}a=3\\b=-3\end{cases}}\)

Dễ thấy các nghiệm thu được chẳng có cái nào cả \(a,b>0\) nên ta có VÔ NGHIỆm

b)\(5\sqrt{x^3+1}=2\left(x^2+2\right)\)

ĐK; \(x\ge-1\)

\(pt\Leftrightarrow25\left(x^3+1\right)=4\left(x^2+2\right)^2\)

\(\Leftrightarrow-4x^4+25x^3-16x^2+9=0\)

\(\Leftrightarrow-\left(x^2-5x-3\right)\left(4x^2-5x+3\right)=0\)

Dễ thấy: \(4x^2-5x+3=0\) thì 

\(\Leftrightarrow4\left(x-\frac{5}{8}\right)^2+\frac{23}{16}>0\forall x\) ( vô nghiệm)

Nên \(x^2-5x-3=0\Leftrightarrow x=\frac{5\pm\sqrt{37}}{2}\) (thỏa)

P/s: lấy số điện thoại ở đây ko tiện, nếu muốn cảm ơn hoặc ko hiểu chỗ nào thì ib nhé

13 tháng 7 2018

Thắng Nguyễn làm sai rồi. đây là giải phương trình chứ có phải là phương trình nghiệm nguyên đâu nên ko thể xét ước đc