Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(\left\{{}\begin{matrix}x>y\\xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y>0\\xy=1\end{matrix}\right.\)
\(P=\dfrac{x^2+y^2}{x-y}=\dfrac{\left(x-y\right)^2+2xy}{x-y}=x-y+\dfrac{2xy}{x-y}=x-y+\dfrac{2}{x-y}\ge2\sqrt{\left(x-y\right)\left(\dfrac{2}{x-y}\right)}=2\sqrt{2}\Rightarrow MinP=2\sqrt{2}\)
mình làm cho bạn 2 cách nha
Cách 1 )
ta có \(1\le y\le2\Leftrightarrow\frac{1}{y^2+1}\ge\frac{1}{2x+3}\)
ta có \(xy+2\ge2y\Leftrightarrow x\ge\frac{2\left(y-1\right)}{y}\ge0\)
ta có \(M=\frac{x^2+4}{y^2+1}=\left(x^2+4\right).\frac{1}{y^2+1}\ge\left(2x+3\right).\frac{1}{2x+3}=1\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
zậy \(minM=\frac{x^2+4}{y^2+1}khi\hept{\begin{cases}x=1\\y=2\end{cases}}\)
cách 2)
ta có \(1\le y\le2;xy+2\ge2y\Leftrightarrow4xy+8\ge8y;4x^2+y^2+8\ge4xy+8\)
từ đó ta có
\(4\left(x^2+4\right)\ge-y^2+8+8y=4\left(y^2+1\right)+\left(5y+2\right)\left(2-y\right)\ge4\left(x^2+1\right)\Rightarrow M=1\)
zậy kết luận như cách 1
\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)
\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)
\(P=x^2+y^2+\frac{33}{xy}\)
\(\ge\frac{\left(x+y\right)^2}{2}+\frac{33}{\frac{\left(x+y\right)^2}{4}}\)
\(\ge\frac{6^2}{2}+\frac{33}{\frac{6^2}{4}}=\frac{65}{3}\)
\("="\Leftrightarrow x=y=3\)
I'm here :))
bước đầu tắt quá .-. k hiểu