K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2016

+)khi nhân M dương thì cả tử và mẫu cùng âm hoặc cùng dương : 

 \(\begin{cases}3x+4>0\\5-2x>0\end{cases}\)<=> \(\begin{cases}x>-\frac{4}{3}\\x< \frac{5}{2}\end{cases}\)=> \(-\frac{4}{3}< x< \frac{5}{2}\)

hoặc \(\begin{cases}3x+4< 0\\5-2x< 0\end{cases}\)<=> \(\begin{cases}x< -\frac{4}{3}\\x>\frac{5}{2}\end{cases}\)vô nghiệm

từ 2 TH trên => M dương khi \(-\frac{4}{3}< x< \frac{5}{2}\)

+) khi N âm thì tử và mẫu trái dấu nhau

\(\begin{cases}x-3>0\\7-x< 0\end{cases}\)<=>\(\begin{cases}x>3\\x>7\end{cases}\)=> x>7

hoặc \(\begin{cases}x-3< 0\\7-x>0\end{cases}\)=> x<3

từ 2TH => những giá trị x thỏa: x<3 hoặc x>7

25 tháng 7 2016

\(1.\frac{x-7}{2}< 0\)

\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)

\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)

\(S=\left\{xlx< 7\right\}\)

2)\(\)Đề biểu thức sau nhân giá trị âm thì :

\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)

\(S=\left\{xlx< 3\right\}\)

3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:

\(x^2+x\ge0\)

\(\Leftrightarrow x\left(x+1\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)

\(S=\left\{xlx\ge-1\right\}\)

19 tháng 2 2016

a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên

và x2 luôn tự nhiên => 5x âm

=>  GTTĐ của x2 < GTTĐ của 5x

=> x < 5

=> x thuộc {4; 3; 2; 1;....}

Vậy....

15 tháng 7 2016

câu hỏi này tôi xem xét lại sau

a) A=2y-1 có giá trị dương

=> y=1

Vì: 2y-1= 2.1-1

=2-1=1

7 tháng 1 2017

\(B=8-2x< 0\Leftrightarrow\) 8-2x<0\(\Leftrightarrow\)2x>8-0

                                                   \(\Leftrightarrow\)2x>8    

                                                        \(\Leftrightarrow\)  x>8/2=4

                                                        vậy x>4 thì B <0

  •  
24 tháng 12 2019

\(5x+35>0\Leftrightarrow x+7>0\Leftrightarrow x>-7\)

\(\left(x-1\right)\left(x-2\right)\ge0\Leftrightarrow\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}}hoac:\hept{\begin{cases}x-1\le0\\x-2\le0\end{cases}}\Leftrightarrow x\ge2\text{ hoặc}x\le1\)

câu c tượng câu b

\(\frac{2x+1}{3x}\ge0\Leftrightarrow\text{2x+1 và 3x cùng dấu}\Leftrightarrow\left(2x+1\right)3x\ge0\)

16 tháng 7 2018

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

16 tháng 7 2018

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)