Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left|2x+4\right|-\left|1-x\right|=-3\)
\(\left|x-5\right|=4x+1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=4x+1\\x-5=-4x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{4}{5}\end{matrix}\right.\)
vậy \(S=\left\{-2;\dfrac{4}{5}\right\}\)
Bạn có thể nói rõ cách làm hơn được không mình không hiểu lắm. Cám ơn bạn.
2. \(|x| +|x-1| ≤ 5 \\ \Leftrightarrow |x| + |x-1| ≤ \dfrac{5}{2}\)
\(-∞\) | \(0\) | \(1\) | \(+∞\) | |
\(|x|\) | \(-x\) | \(x\) | \(x\) | \(x\) |
\(|x-1|\) | \(1-x\) | \(1-x\) | \(x-1\) | \(x-1\) |
\(|x|+|x-1|\) | \(1-2x\) | \(1\) | \(2x-1\) | \(2x-1\) |
TH1: \(1-2x ≤ \dfrac{5}{2} \Leftrightarrow x ≥ \dfrac{-3}{4}\)
TH2: \(2x-1 ≤ \dfrac{5}{2} \Leftrightarrow x ≤ \dfrac{7}{4}\)
Vậy....
1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...
2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)
\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)
\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)
\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)
\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)
c/ A M C B N BC=8 AC=7 AB=6
- Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)
\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)
\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)
- \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)
\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)
\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)
\(=\frac{173}{2}\)
\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)
Ta có :
\(\left|2x-1\right|=\left|2x+3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=2x+3\\2x-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-2x=3+1\\2x+2x=-3+1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0=4\left(loại\right)\\4x=-2\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{-1}{2}\)
Vậy ...
\(\left|2x-1\right|=\left|2x+3\right|\)
\(\Rightarrow\left|2x-1\right|=2x+3\)
\(\Rightarrow2x-1=2x+3\) hoặc \(2x-1=-\left(2x+3\right)\)
\(\Rightarrow2x-2x=3+1\) hoặc \(2x-1=-2x-3\)
\(\Rightarrow0=4\) ( loại ) hoặc \(2x+2x=-3+1\)
\(\Rightarrow4x=-2\)
\(\Rightarrow x=\dfrac{-1}{2}\)
1) \(12+\left(4-x\right)=-5\)
\(\Leftrightarrow12+4-x=-5\)
\(\Leftrightarrow-x=-5-12-4=-21\)
\(\Leftrightarrow x=21\)
2) \(\left|x-6\right|=5\)
\(\Leftrightarrow\left[\begin{matrix}x-6=5\\x-6=-5\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=11\\x=1\end{matrix}\right.\)
3) \(\left|x-3\right|=4\)
\(\Leftrightarrow\left[\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
4) \(x=-11\)
a, 12+(4-x)=-5
4-x=7
=>x=3
b,|x-6|=5
=>x-6=\(\pm6\)
Xét 2 TH:
\(\Rightarrow\left[\begin{matrix}x-6=6\\x-6=-6\end{matrix}\right. \)
\(\Rightarrow\left[\begin{matrix}x=12\\x=0\end{matrix}\right.\)
Vậy \(x\in\left\{0;12\right\}\)
c, |x-3|=4
x-3=±4
Xét 2 TH:
\(\Rightarrow\left[\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=7\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{-1;7\right\}\)
d, 12+11+10+...+x=12
\(\Rightarrow11+10+...+x=0\)
Gọi n là số số hạng của vế trái.
\(\Rightarrow\frac{\left(11+x\right).n}{2}\)=11+10+...+x=0
=>11+x=0
=>x=-11