Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4-\sqrt{x^2+1}-2\sqrt{16\left(x^2+1\right)}+5\sqrt{25\left(x^2+1\right)}\)
\(=4-\sqrt{x^2+1}-4\sqrt{x^2+1}+25\sqrt{x^2+1}\)
\(=20\sqrt{x^2+1}+4\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+2\right)}{2+\sqrt{2}+\sqrt{3}}\)
=1+căn 2
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{4}\right)+\left(\sqrt{6}+\sqrt{3}\right)+\left(\sqrt{4}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}\left(1+\sqrt{2}\right)+\sqrt{3}\left(1+\sqrt{2}\right)+\sqrt{4}\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
Số hạng tổng quát: 1/[n.căn(n-1)+(n-1).căn n] n=1,2,....100
trục căn thức 1/[n.căn(n-1)+(n-1).căn n] =[n.căn(n-1)-(n-1).căn n] /[n2.(n-1)-(n-1)2.n]
=[n.căn(n-1)-(n-1).căn n]/(n-1).n(n-n+1)=[n.căn(n-1)-(n-1).căn n]/(n-1).n.
= 1/ căn(n-1)-1/căn n
thay số:
1/(2.căn 1 +1.căn 2)= 1/căn 1 -1/căn 2
1/(3.căn 2+ 2.căn 3 )= 1/căn 2 -1/căn 3
........
1/(100.căn99 + 99.căn 100)= 1/ căn 99-1/ căn 100
cộng tổng theo 2 vế được:
1/(2.căn 1 +1.căn 2) + 1/(3.căn 2+ 2.căn 3 )+...+ 1/(100.căn99 + 99.căn 100)= 1/ căn 1-1/ căn100
=1-1/10=9/10
Lời giải:
$\sqrt{0,16}+\sqrt{\frac{4}{25}}=\sqrt{0,16}+\sqrt{0,16}$
$=2\sqrt{0,16}=2\sqrt{0,4^2}=2.0,4=0,8$
\(\sqrt{0.16}+\sqrt{\dfrac{4}{25}}\)
\(=0.4+\dfrac{2}{5}\)
=0.8