Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-x^2+6x-11
=-(x^2-6x+11)
=-(x^2-6x+9+2)
=-(x-3)^2-2<=-2
Dấu = xảy ra khi x=3
ta có: H = 4x - x^2 = - (x^2 -4x) = -(x^2-4x+4-4) = -(x-2)^2 + 4
mà \(-\left(x-2\right)^2+4\le4\)
Để H có GTLN
=> -(x-2)^2 + 4 = 4
-(x-2)^2 = 0
=> x - 2 = 0 => x = 2
KL:...
Ta có: \(H=4x-x^2\)
\(\Rightarrow H=-x^2+4x\)
\(\Rightarrow H=-x^2+4x-4+4\)
\(\Rightarrow H=-\left(x-2\right)^2+4\)
Ta thấy: \(-\left(x-2\right)^2\le0\)với mọi x
\(\Leftrightarrow-\left(x-2\right)^2+4\le4\)với mọi x
Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
Vậy................
\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:
Ta có:
\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) \(x=1\)
Vậy, \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)
-------------------------------------------------
\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi \(x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\) \(\Leftrightarrow\) \(2x+1=0\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
Vậy, \(B_{max}=4\) \(\Leftrightarrow\) \(x=-\frac{1}{2}\)
____________________________________
\(\left(\text{*}\text{*}\right)\) Tìm giá trị nhỏ nhất của biểu thức sau:
Từ \(A=\frac{x^2+1}{x^2-x+1}\)
\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\) với mọi \(x\)
Vì \(3A\ge2\) nên \(A\ge\frac{2}{3}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x+1\right)^2=0\) \(\Leftrightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
Vậy, \(A_{min}=\frac{2}{3}\) \(\Leftrightarrow\) \(x=-1\)
Câu b) tự giải
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.
P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4
P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8
P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8
P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2
P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2
P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8
P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8
MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8
Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4
Min (xy + 1)2(xy – 1)2 = 0 =>
TH1: xy = -1 (không có x,y thỏa mãn)
TH2: xy = 1 => x = y = 1 => Min P = – 4
Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)
Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.