K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

cậu 1 GTNN=1 khi x=0

câu 2 GTLN =12/11 khi x=3/2

13 tháng 1 2016

ta co : x^2-3x+5=(x+3/2)^2+11/4  => (x+3/2)^2+11/4 >hoac= 11/4 ; roi ban lay 3 chia cho ca 2 ve ta duoc : 3/(x^2-3x+5) >hoac = 12/11 ;             dau = xay ra =>max=12/11 <=>x=-3/2                                                                                                                                                                                                     chuc ban hoc tot !!!!!

-x^2+6x-11

=-(x^2-6x+11)

=-(x^2-6x+9+2)

=-(x-3)^2-2<=-2

Dấu = xảy ra khi x=3

1 tháng 1 2019

ta có: H = 4x - x^2 = - (x^2 -4x) = -(x^2-4x+4-4) = -(x-2)^2 + 4

mà \(-\left(x-2\right)^2+4\le4\)

Để H có GTLN

=> -(x-2)^2 + 4 = 4

-(x-2)^2 = 0

=> x - 2 = 0 => x = 2

KL:...

Ta có: \(H=4x-x^2\)

\(\Rightarrow H=-x^2+4x\)

\(\Rightarrow H=-x^2+4x-4+4\)

\(\Rightarrow H=-\left(x-2\right)^2+4\)

Ta thấy: \(-\left(x-2\right)^2\le0\)với mọi x

\(\Leftrightarrow-\left(x-2\right)^2+4\le4\)với mọi x

Dấu "=" xảy ra khi \(\left(x-2\right)^2=0\)

                        \(\Leftrightarrow x=2\)

Vậy................

11 tháng 1 2016

\(\left(\text{*}\right)\) Tìm giá trị lớn nhất của biểu thức sau:

Ta có:

\(A=\frac{x^2+1}{x^2-x+1}=\frac{2\left(x^2-x+1\right)-\left(x^2-2x+1\right)}{x^2-x+1}=2-\frac{\left(x-1\right)^2}{x^2-x+1}\le2\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x-1\right)^2=0\)  \(\Leftrightarrow\)  \(x-1=0\)  \(\Leftrightarrow\) \(x=1\)

Vậy,   \(A_{max}=2\) \(\Leftrightarrow\) \(x=1\)

                                 -------------------------------------------------

\(B=\frac{3-4x}{x^2+1}=\frac{4\left(x^2+1\right)-\left(4x^2+4x+1\right)}{x^2+1}=4-\frac{\left(2x+1\right)^2}{x^2+1}\le4\) với mọi  \(x\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(2x+1\right)^2=0\)  \(\Leftrightarrow\) \(2x+1=0\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

Vậy,   \(B_{max}=4\)  \(\Leftrightarrow\)  \(x=-\frac{1}{2}\)

                              ____________________________________

 \(\left(\text{*}\text{*}\right)\)  Tìm giá trị nhỏ nhất của biểu thức sau:

Từ \(A=\frac{x^2+1}{x^2-x+1}\)

\(\Rightarrow\) \(3A=\frac{3x^2+3}{x^2-x+1}=\frac{\left(x^2+2x+1\right)+2\left(x^2-x+1\right)}{x^2-x+1}=\frac{\left(x+1\right)^2}{x^2-x+1}+2\ge2\)  với mọi  \(x\)

Vì   \(3A\ge2\) nên  \(A\ge\frac{2}{3}\)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\) \(\left(x+1\right)^2=0\)  \(\Leftrightarrow\)  \(x+1=0\)  \(\Leftrightarrow\) \(x=-1\)

Vậy,   \(A_{min}=\frac{2}{3}\)  \(\Leftrightarrow\)  \(x=-1\)

Câu b) tự giải

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

6 tháng 3 2017

kết quả là 4 nhưng mk ko biết làm

6 tháng 3 2017

Mình cũng mới hỏi câu này luôn ấy, mình có cách làm nhưng sợ không đúng thôi.

P = x4y4 + x4 + y4 + 1 + 12x2y2 – 16xy – 4

P = x4y4 + x4 + y4 + 1 + 16x2y2 – 16xy + 4 – 4x2y2 – 8

P = x4y4 + x4 + y4 + 1 + (4xy – 2)2 – 4x2y2 – 8

P = (x4 – 2x2y2 + y4) + (x4y4 – 2x2y2 + 1) – 8 + (4xy – 2)2

P = (x2 – y2)2 + (x2y2 – 1)2 – 8 + (4xy – 2)2

P = (x + y)2(x – y)2 + (xy + 1)2(xy – 1)2 + (4xy – 2)2 – 8

P = 4(x – y)2 + (xy + 1)2(xy – 1)2 + 4(2xy – 1)2 – 8

MinP = Min 4(x – y)2 + min (xy + 1)2(xy – 1)2 + min 4(2xy – 1)2 – 8

Min 4(x – y)2 = 0 => x – y = 0 => x = y = 1 => MinP = – 4

Min (xy + 1)2(xy – 1)2 = 0 =>

          TH1: xy = -1 (không có x,y thỏa mãn)

          TH2: xy = 1 => x = y = 1 => Min P = – 4

Min 4(2xy – 1)2 = 0 => xy = \(\frac{1}{2}\)(không có x,y thỏa mãn)

Vậy thì kết quả là -4, Violympic chưa mở nên mình chưa thử kết quả được, thân ái.