K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

giúp mk với mọi người ơi

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Bạn tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cac-duong-phan-giac-cac-goc-ngoai-tai-dinh-b-va-c-cua-tam-giac-abc-cat-nhau-o-k-duong-thang-vuong-goc-voi-ak-tai-k-cat-cac-duong-thang-ab-ac-theo-thu-tu-o-d-va-e-cma-dbkdong-dang-kecb-de2.641349245234

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Lời giải:

a) Thứ tự tam của tam giác đồng dạng bị sai. Phải là $\triangle DBK\sim \triangle EKC$

Ta có $K$ là giao 2 tia phân giác ngoài góc $B,C$ của tam giác $ABC$ nên $AK$ là tia phân giác trong góc $A$

Tam giác $ADE$ có $AK$ vừa là tia phân giác vừa là đường cao nên là tam giác cân

$\Rightarrow \widehat{ADK}=\widehat{AEK}$ hay $\widehat{BDK}=\widehat{KEC}(1)$

Mặt khác:

$\widehat{CKE}=90^0-\widehat{AKC}=90^0-(180^0-\widehat{KAC}-\widehat{ACK})=\widehat{KAC}+\widehat{ACK}-90^0$

$=\frac{\widehat{A}}{2}+\widehat{C}{2}+\frac{\widehat{A}+\widehat{B}}{2}-90^0$

$=\frac{2\widehat{A}+\widehat{B}+2\widehat{C}-180^0}{2}=\frac{\widehat{A}+\widehat{C}}{2}=\widehat{KBD}(2)$

Từ $(1);(2)$ suy ra $\triangle DBK\sim \triangle EKC$ (g.g)

b) 

Từ kết quả tam giác đồng dạng phần a

$\Rightarrow \frac{DK}{EC}=\frac{DB}{EK}$

$\Rightarrow DK.EK=EC.DB$

$\Leftrightarrow \frac{DE}{2}.\frac{DE}{2}=BD.CE$

$\Leftrightarrow DE^2=4BD.CE$ (đpcm)

 

AH
Akai Haruma
Giáo viên
16 tháng 4 2021

Hình vẽ:

undefined

18 tháng 3 2020

bạn lên google tham khảo \ hình??

5 tháng 3 2018

 vì các đường phân giác góc ngoài tại đỉnh B; C cắt nhau tại K nên K là tâm đường tròn bàng tiếp góc A của tam giác ABC suy ra AK là phân giác góc A, mà AK vuông góc với DE nên tam giác DAE cân ,suy ra góc D= góc E, 
mặt khác, góc CKE =90-AKC =90-(180-KAC-ACK)=90-(180-A/2-(A+B)/2-C)... 
suy ra 2 tam giác đồng dạng 

Mình làm câu A thôi

để có điểm hỏi đáp

5 tháng 3 2018

Cái này mình tìm rùi nhưng làm tương tự cx ko có ra đâu. 

24 tháng 8 2019

làm ra chưa chỉ mình với

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔADB\(\sim\)ΔAEC(g-g)