Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cô-si:
\(\dfrac{x^2}{x+1}+\dfrac{x+1}{9}\ge2\sqrt{\dfrac{x^2\left(x+1\right)}{9\left(x+1\right)}}=\dfrac{2}{3}x\)
\(\dfrac{y^2}{y+1}+\dfrac{y+1}{9}\ge2\sqrt{\dfrac{y^2\left(y+1\right)}{9\left(y+1\right)}}=\dfrac{2}{3}y\)
Cộng vế:
\(\dfrac{x^2}{x+1}+\dfrac{y^2}{y+1}+\dfrac{x+y+2}{9}\ge\dfrac{2}{3}\left(x+y\right)\)
\(\Leftrightarrow P+\dfrac{1+2}{9}\ge\dfrac{2}{3}.1\)
\(\Rightarrow P\ge\dfrac{1}{3}\)
\(P_{min}=\dfrac{1}{3}\) khi \(x=y=\dfrac{1}{2}\)
Áp dụng BĐT Cô-si:
\(3\left(a^2+4\right)\ge3.4a=12a\)
\(b^4+b^4+b^4+81\ge4\sqrt[4]{81b^{12}}=12b^3\)
Cộng vế:
\(3\left(a^2+b^4\right)+93\ge12\left(a+b^3\right)=384\)
\(\Rightarrow a^2+b^4\ge85\)
\(\Rightarrow P\ge85-19=66\)
\(P_{min}=66\) khi \(\left(a;b\right)=\left(2;3\right)\)
16c:
ĐKXĐ: \(x>=3\)
\(\sqrt{x^2-9}+6=3\sqrt{x+3}+\sqrt{x-3}\)
Đặt \(\sqrt{x-3}=a\left(a>=0\right);\sqrt{x+3}=b\left(b>=0\right)\)
Phương trình sẽ trở thành:
ab+6=3b+a
=>\(ab-a-3b-6=0\)
=>\(\left(ab-3b\right)-a+3-9=0\)
=>\(b\left(a-3\right)-\left(a-3\right)=9\)
=>\(\left(a-3\right)\left(b-1\right)=9\)
=>\(\left(a-3\right)\left(b-1\right)=1\cdot9=9\cdot1=\left(-1\right)\cdot\left(-9\right)=\left(-9\right)\cdot\left(-1\right)=3\cdot3=\left(-3\right)\cdot\left(-3\right)\)(1)
a>=0; b>=0
=>a-3>=-3; b-1>=-1(2)
Từ (1) và (2) suy ra
\(\left(a-3;b-1\right)\in\left\{\left(1;9\right);\left(9;1\right);\left(3;3\right)\right\}\)
=>\(\left(a,b\right)\in\left\{\left(4;10\right);\left(12;2\right);\left(6;4\right)\right\}\)
TH1: a=4 và b=10
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=4\\\sqrt{x+3}=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=16\\x+3=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=19\\x=97\end{matrix}\right.\)
=>Loại
TH2: a=12 và b=2
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=12\\\sqrt{x+3}=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=144\\x+3=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=147\\x=1\end{matrix}\right.\)
=>Loại
TH3: a=6 và b=4
=>\(\left\{{}\begin{matrix}\sqrt{x-3}=6\\\sqrt{x+3}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-3=36\\x+3=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=39\\x=13\end{matrix}\right.\)
=>Loại
vậy: Phương trình vô nghiệm
Phóng to cho tôi xem , bài của cậu chữ bé nhỏ tôi ko nhìn thấy gì cả?
Bài 3:
2:
a: Thay m=0 vào (d), ta được:
\(y=\left(0+1\right)x-2=x-2\)
b: Thay x=1 vào y=x+1, ta được:
y=1+1=2
Thay x=1 và y=2 vào (d), ta được:
1(m+1)-2=2
=>m+1=4
=>m=3
c: Để \(\widehat{OAB}=45^0\) thì góc tạo bởi (d) với trục Ox bằng 45 độ
(d): y=(m+1)x-2
=>a=m+1
\(\Leftrightarrow tanOAB=a=m+1\)
=>m+1=tan45=1
=>m=0
4:
a: vì a=2>0
nên hàm số y=2x-1 đồng biến trên R
b:
c: Thay x=1 vào y=2x-1, ta được:
\(y=2\cdot1-1=2-1=1\)
=>A(1;1) có thuộc (d)
d: Phương trình hoành độ giao điểm là:
2x-1=-x+2
=>\(2x+x=2+1\)
=>3x=3
=>x=1
Thay x=1 vào y=2x-1, ta được:
\(y=2\cdot1-1=1\)
Vậy: (d) cắt (d') tại A(1;1)
e: Vì (m): y=ax+b song song với (d) nên ta có:
\(\left\{{}\begin{matrix}a=2\\b< >-1\end{matrix}\right.\)
=>y=2x+b
Thay x=-2 và y=3 vào y=2x+b, ta được:
b-2*2=3
=>b-4=3
=>b=7
=>y=2x+7
Xét tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 (định lý Py ta go).
Thay số: AC2 = 122 + 162.
<=> AC2 = 144 + 256.
<=> AC2 = 400.
<=> AC2 = 202 (AC > 0).
<=> AC = 20 (cm).
Vậy AC = 20 cm.
Xét tam giác ABC vuông tại B có: BH là đường cao (gt).
=> BH . AC = AB . BC (Hệ thức lượng).
Thay: BH . 20 = 12 . 16.
<=> BH = 9.6 (cm).
Vậy BH = 9.6 cm.
Xét tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 (định lý Py ta go).
Thay số: AC2 = 122 + 162.
<=> AC2 = 144 + 256.
<=> AC2 = 400.
<=> AC2 = 202 (AC > 0).
<=> AC = 20 (cm).
Vậy AC = 20 cm.
Xét tam giác ABC vuông tại B có: BH là đường cao (gt).
=> BH . AC = AB . BC (Hệ thức lượng).
Thay: BH . 20 = 12 . 16.
<=> BH = 9.6 (cm).
Vậy BH = 9.6 cm.
2.2 Đề lỗi không dịch được
2.3
\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=2\Rightarrow\left[{}\begin{matrix}x_1-x_2=\sqrt{2}\\x_1-x_2=-\sqrt{2}\end{matrix}\right.\)
Do \(x_1\) là nghiệm của pt nên ta có:
\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow2x_1^2=4mx_1-2m^2+1\)
Thế vào bài toán:
\(4mx_1-2m^2+1-4mx_2+2m^2-9< 0\)
\(\Leftrightarrow m\left(x_1-x_2\right)< 2\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2}m< 2\\-\sqrt{2}m< 2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< \sqrt{2}\\m>-\sqrt{2}\end{matrix}\right.\)
(Bản thân câu này đề bài cũng rất dở)
ĐKXĐ: \(\left\{{}\begin{matrix}5x^2+14x+9>=0\\x+1>=0\\x^2-x-20>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+1\right)\left(5x+9\right)>=0\\x+1>=0\\\left(x-5\right)\left(x+4\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x< =-\dfrac{9}{5}\\x>=-1\end{matrix}\right.\\x>=-1\\\left[{}\begin{matrix}x>=5\\x< =-4\end{matrix}\right.\end{matrix}\right.\)
=>x>=5
\(\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
=>\(\sqrt{5x^2+14x+9}-21+6-\sqrt{x^2-x-20}=5\sqrt{x+1}-15\)
=>\(\dfrac{5x^2+14x+9-441}{\sqrt{5x^2+14x+9}+21}+\dfrac{36-x^2+x+20}{6+\sqrt{x^2-x-20}}=5\left(\sqrt{x+1}-3\right)\)
=>\(\dfrac{5x^2+14x-432}{\sqrt{5x^2+14x+9}+21}+\dfrac{-x^2+x+56}{6+\sqrt{x^2-x-20}}=5\cdot\dfrac{x+1-9}{\sqrt{x+1}+3}\)
=>\(\dfrac{\left(x-8\right)\left(5x+54\right)}{\sqrt{5x^2+14x+9}+21}-\dfrac{x^2-x-56}{\sqrt{x^2-x-20}+6}=\dfrac{5\left(x-8\right)}{\sqrt{x+1}+3}\)
=>\(\dfrac{\left(x-8\right)\left(5x+4\right)}{\sqrt{5x^2+14x+9}+21}-\dfrac{\left(x-8\right)\left(x+7\right)}{\sqrt{x^2-x-20}+6}-\dfrac{5\left(x-8\right)}{\sqrt{x+1}+3}=0\)
=>\(\left(x-8\right)\left(\dfrac{5x+4}{\sqrt{5x^2+14x+9}+21}-\dfrac{x+7}{\sqrt{x^2-x-20}+6}-\dfrac{5}{\sqrt{x+1}+3}\right)=0\)
=>x-8=0
=>x=8(nhận)
Lời giải:
\(P.\frac{1}{\sqrt{2}}=\frac{\sqrt{(x-1)+2\sqrt{x-1}+1}+\sqrt{(x-1)-2\sqrt{x-1}+1}}{\sqrt{(2x-1)+2\sqrt{2x-1}+1}-\sqrt{(2x-1)-2\sqrt{2x-1}+1}}\)
\(=\frac{\sqrt{(\sqrt{x-1}+1)^2}+\sqrt{(\sqrt{x-1}-1)^2}}{\sqrt{(\sqrt{2x-1}+1)^2}-\sqrt{(\sqrt{2x-1}-1)^2}}\)
\(=\frac{\sqrt{x-1}+1+\sqrt{x-1}-1}{\sqrt{2x-1}+1-(\sqrt{2x-1}-1)}=\frac{2\sqrt{x-1}}{2}=\sqrt{x-1}\)
b: