Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
\(\frac{10}{x+2}=\frac{60}{6(x+2)}=\frac{60(x-2)}{6(x+2)(x-2)}=\frac{60(x-2)}{6(x^2-4)}\)
\(\frac{5}{2x-4}=\frac{15(x+2)}{6(x-2)(x+2)}=\frac{15(x+2)}{6(x^2-4)}\)
\(\frac{1}{6-3x}=\frac{x+2}{3(2-x)}=\frac{2(x+2)^2}{6(2-x)(2+x)}=\frac{-2(x+2)^2}{6(x^2-4)}\)
b.
\(\frac{1}{x+2}=\frac{x(2-x)}{x(x+2)(2-x)}=\frac{x(2-x)}{x(4-x^2)}\)
\(\frac{8}{2x-x^2}=\frac{8(x+2)}{(x+2)x(2-x)}=\frac{8(x+2)}{x(4-x^2)}\)
c.
\(\frac{4x^2-3x+5}{x^3-1}\)
\(\frac{1-2x}{x^2+x+1}=\frac{(1-2x)(x-1)}{(x-1)(x^2+x+1)}=\frac{-2x^2+3x-1}{x^3-1}\)
\(-2=\frac{-2(x^3-1)}{x^3-1}\)
\(=\dfrac{x+1}{x^3+1}+\dfrac{x^3+1}{x^3+1}-\dfrac{x^2+2}{x^3+1}\)
\(=\dfrac{x+1+x^3+1-x^2-2}{x^3+1}\)
\(=\dfrac{x^3-x^2+x}{x^3+1}=\dfrac{x\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{x}{x+1}\)
a) \(=2x\left(x-25\right)\)
b) \(=x\left(x-4\right)-\left(x-4\right)=\left(x-4\right)\left(x-1\right)\)
c) \(=x^2-\left(y^2-12y+36\right)=x^2-\left(y-6\right)^2=\left(x-y+6\right)\left(x+y-6\right)\)
d) \(=y\left(x^2+4xz+4yz\right)\)
\(a,=\left(x+y\right)\left(y+z\right)\\ b,=x\left(x^2+2x+1\right)=x\left(x+1\right)^2\\ c,=\left(x-y\right)\left(x+y\right)+\left(x-y\right)=\left(x+y+1\right)\left(x-y\right)\\ d,= \left(2x-5\right)\left(2x+5\right)\\ e,=\left(4y-3\right)\left(4y+3\right)\)
\(a,\left(x+y\right)^2-2xy=x^2+2xy+y^2-2xy=x^2+y^2\left(đpcm\right)\\ b,\left(a+b\right)^2-\left(a-b\right)\left(a+b\right)=\left(a+b\right)\left(a+b-a+b\right)=2b\left(a+b\right)\left(đpcm\right)\)
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)
\(=3x\left(x+2\right)\)
Your bro giải xong.
(x-2)^2+(x+1)^2+2(x-2)(-x-1)
=(x-2)^2+(x+1)^2-2(x-2)(x+1)
=(x-2-x-1)^2
=(-3)^2=9