K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2020

Số nguyên tố là số chỉ có 2 ước là 1 và chính nó. Số 2; 3; 5; 7 là các số nguyên tố nhỏ nhất                                                                           Hợp số là số có nhiều hơn 2 ước.                                                                                                                                                                       Muốn phân biệt được số nguyên tố và hợp số ta phải:                                                                                                                              - ---  -Thuộc lòng dấu hiệu chia hết cho 2; 3; 5; 7                                                                                                                                                                                  

Số nguyên tố là số tự nhiên lớn hơn 1 không phải là tích của hai số tự nhiên nhỏ hơn. Nói cách khác, số nguyên tố là những số chỉ có đúng hai ước số là 1 và chính nó. Các số tự nhiên lớn hơn 1 không phải là số nguyên tố được gọi là các hợp số.

12 tháng 8 2015

dấu hiệu về nguyên tố : 

nguyên tố là số chỉ có 2 ước là 1 và chính số đó 

hợp số là số lớn hơn 1 có từ 3 ước trở lên

chú ý:số 0 và 1 ko phải là số nguyên tố ko phải là hớp số

click đúng nhá
 

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

Các số nguyên tố là: 89 ; 97 ; 541 vì mỗi số này chỉ có 2 ước là 1 và chính nó

Các hợp số là: 125 ; 2 013; 2 018 vì mỗi số này có nhiều hơn 2 ước ( ngoài 1 và chính nó, 125 còn có ước là 5; 2013 còn có ước là 3; 2018 còn có ước là 2).

AH
Akai Haruma
Giáo viên
15 tháng 10 2021

Lời giải:

$89$ là số nguyên tố

$97$ là số nguyên tố

$125$ là hợp số, do $>5$ mà lại chia hết cho $5$

$2013$ là hợp số, do $>3$ mà lại chia hết cho $3$

$2018$ là hợp số, do $>2$ mà lại chia hết cho $2$

22 tháng 8 2019

+) Với p=2 \(\Rightarrow p+8=2+8=10\)( ko là SNT )

                   \(\Rightarrow p=2\)( loại )

+) Với \(p=3\Rightarrow p+8=3+8=11\)( là SNT) 

                     \(\Rightarrow4p+1=3.4+1=13\)( là SNT)

                   \(\Rightarrow p=3\)( chọn )

+) Với p>3 \(\Rightarrow p\)có dạng 3k+1            ( k \(\in N\)

                                    hoặc 3k+2

+) Với \(p=3k+1\Rightarrow p+8=3k+1+8=3k+9=3\left(k+3\right)⋮3\)

                                                                                     Mà \(3\left(k+3\right)>0\)

                 \(\Rightarrow3\left(k+3\right)\)là hợp số 

                 \(\Rightarrow p=3k+1\)( loại )

+) Với \(p=3k+2\Rightarrow4p+1=4\left(3k+2\right)+2=12k+10=2\left(6k+5\right)⋮2\) 

                                                                 Mà \(2\left(6k+5\right)>0\)

                \(\Rightarrow2\left(6k+5\right)\)là hợp số

                 \(\Rightarrow p=3k+2\)(loại )

Vậy p và p+8 là SNT thì 4p+1 là SNT

24 tháng 11 2018

Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)

=> p^2 :3(dư 1)

=> p^2+2018 chia hết cho 3 và>3

nên là hợp số

2, Vì n ko chia hết cho 3 và>3

nên n^2 chia 3 dư 1

=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố 

3, Ta có:

P>3

p là số nguyên tố=>8p^2 không chia hết cho 3

mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3

Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3

mà 2 số trước ko chia hết cho 3

nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)

4, Vì p>3 nên p lẻ

=> p+1 chẵn chia hết cho 2 và>2 

p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)

=> p+1=3k+3 chia hết cho 3 và>3 

từ các điều trên

=> p chia hết cho 2.3=6 (ĐPCM)