\(\dfrac{10^{2015}+1}{10^{2016}+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

Sửa đề:

So sánh:

\(A=\dfrac{10^{2015}+1}{10^{2016}+1}\)\(B=\dfrac{10^{2016}+1}{10^{2017}+1}\)

Giải:

Ta thấy: \(\left\{{}\begin{matrix}A=\dfrac{10^{2015}+1}{10^{2016}+1}< 1\\B=\dfrac{10^{2016}+1}{10^{2017}+1}< 1\end{matrix}\right.\)

\(\Rightarrow\) Áp dụng tính chất \(\dfrac{a}{b}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\) ta có:

\(B=\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2016}+1+9}{10^{2017}+1+9}=\dfrac{10^{2016}+10}{10^{2017}+10}\)

\(=\dfrac{10\left(10^{2015}+1\right)}{10\left(10^{2016}+1\right)}=\dfrac{10^{2015}+1}{10^{2016}+1}\)

\(\Rightarrow\dfrac{10^{2016}+1}{10^{2017}+1}< \dfrac{10^{2015}+1}{10^{2016}+1}\)

Vậy \(B< A\)

Hay \(A>B\)

5 tháng 5 2018

B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)

Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)

Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.

Vậy A > B . 

5 tháng 5 2018

Bạn Dont look at me

Bạn nên làm theo bạn ấy

Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng

Theo mk là vậy

26 tháng 3 2019

\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)

\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)

\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)

\(=1+\frac{18162}{10^{2017}+2018}\)

\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)

\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)

\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)

\(=1+\frac{18162}{10^{2018}+2018}\)

Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)

=> 10A > 10B

=> A > B

22 tháng 4 2018

Ta có : 

\(A=\frac{2018^{2017}+1}{2018^{2017}-1}=\frac{2018^{2017}-1+2}{2018^{2017}-1}=\frac{2018^{2017}-1}{2018^{2017}-1}+\frac{2}{2018^{2017}-1}=1+\frac{2}{2018^{2017}-1}\)

\(B=\frac{2018^{2017}-1}{2018^{2017}-3}=\frac{2018^{2017}-3+2}{2018^{2017}-3}=\frac{2018^{2017}-3}{2018^{2017}-3}+\frac{2}{2018^{2017}-3}=1+\frac{2}{2018^{2017}-3}\)

Vì \(2018^{2017}-1>2018^{2017}-3\) nên \(\frac{2}{2018^{2017}-1}< \frac{2}{2018^{2017}-3}\)

\(\Rightarrow\)\(1+\frac{2}{2018^{2017}-1}< 1+\frac{2}{2018^{2017}-3}\)

\(\Rightarrow\)\(A< B\)

Vậy \(A< B\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

ta có nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)

mà B> nên B=\(\frac{2018^{2017}-1}{2018^{2017}-3}\)>\(\frac{2018^{2017}-1+2}{2018^{2017}-3+2}\)=\(\frac{2018^{2017}+1}{2018^{2017}-1}\)=A

vậy B>A

4 tháng 5 2017

Ta có \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)

Vì \(\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1};1=1\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow\frac{10^{11}-1}{10^{12}-1}< \frac{10^{10}+1}{10^{11}+1}\)

Suy ra\(A< B\)

4 tháng 5 2017

\(A=\frac{10^{11}-1}{10^{12}-1}\) => \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)

=> \(10A=1-\frac{9}{10^{12}-1}\)=> 10A < 1

\(B=\frac{10^{10}+1}{10^{11}+1}\) => \(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)

=> \(10B=1+\frac{9}{10^{11}+1}\)=> 10B > 1

=> 10B > 10A => B > A

ĐS: B > A

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

2 tháng 4 2017

\(=\dfrac{2}{2}\).(\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))

=2.(\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\)+...+\(\dfrac{2}{x.\left(x+1\right)}\))

=2.(\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{4.5}\)+...+\(\dfrac{1}{x.\left(x+1\right)}\))

=2.[(\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\))

=2.[\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+1}\)]

2.[(\(\dfrac{1}{3}\)-\(\dfrac{1}{3}\))+(\(\dfrac{1}{4}\)-\(\dfrac{1}{4}\))+...+(\(\dfrac{1}{x}\)-\(\dfrac{1}{x}\))+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]

=2.[0+0+...+0+(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))]

=2.(\(\dfrac{1}{2}\)-\(\dfrac{1}{x+1}\))

=2.(\(\dfrac{1.x+1-1.2}{2.x+1}\))

=2.(\(\dfrac{x+1-2}{2x}\))=2.\(\dfrac{x-1}{2x}\)=\(\dfrac{2.\left(x-1\right)}{2x}\)=\(\dfrac{2x-2}{2x}\)

\(\dfrac{2x-2}{2x}\)=\(\dfrac{2014}{2016}\)\(\Rightarrow\)(2x-2).2016=2014.2x=4032x-4032=4028x

\(\Rightarrow\)4032x-4028x=4x=4032\(\Rightarrow\)x=4032:4=1008

2 tháng 4 2017

Đặt A=\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x.\left(x+1\right)}\)

\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}\)

\(A=\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{x.\left(x+1\right)}\)

28 tháng 11 2017

a) Với a>b thì => (a+n).b=ab+bn>ab+an=a(b+n)=>(a+n).b>a.(b+n)

=> a+nb+n >ab 

Với b>a thì chứng minh tương tự ta được a+nb+n <ab 

Với a=b thì chứng minh tương tự ta được a+nb+n =ab

28 tháng 11 2017

\(B=\frac{10^{10}+1}{10^{11}+1}=\frac{10^{11}+10}{10^{12}+10}=\frac{10^{11}-1+11}{10^{12}-1+11}< \frac{10^{11}-1}{10^{12}-1}=A\)=> A>B

2 tháng 3 2017

\(A-B=\frac{\left(10^{11}-1\right)\left(10^{11}+1\right)-\left(10^{12}-1\right)\left(10^{10}+1\right)}{MSC>0}=\frac{\left(10^{22}-1\right)-\left(10^{22}+10^{12}-10^{10}-1\right)}{MSC>0}\)

\(A-B=\frac{\left(10^{10}-10^{12}\right)< 0}{MSC>0}< 0\Rightarrow A< B\)