Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi,vì tất cả bài tập này khá nhiều và cx khá khó nên sẽ ko ai trả lời đâu,bn nên đăng từng bài một thôi nhé,nếu bn đăng như mk nói thì mà ko có ai trả lời thì hãy viết bài toán đó trên google để tra nhé,chúc bn làm bài tốt
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
b, \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng dãy tỉ số bằng nhau :
\(\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x = 2 . 10 = 20
y = 2 . 15 = 30
z = 2 . 21 = 42
Vậy : .....
a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
MSC của y là : 20
Có: \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau, ta có:
\(2x+3y-z=186\)
\(\Rightarrow2.15+3.20-28=30+60-28=62\)
\(\frac{186}{62}=3\)
x = 3 . 15 = 45
y = 3 . 20 = 60
z = 3 . 28 = 84
Vậy: .....
Ta có: \(\frac{x}{5}=\frac{y}{6}\) => \(\frac{x}{35}=\frac{y}{42}\)
\(\frac{y}{7}=\frac{z}{8}\) => \(\frac{y}{42}=\frac{z}{48}\)
=> \(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{35}=\frac{y}{42}=\frac{z}{48}=\frac{x+y+z}{35+42+48}=\frac{250}{125}=2\)
=> \(\hept{\begin{cases}\frac{x}{35}=2\\\frac{y}{42}=2\\\frac{z}{48}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.35=70\\y=2.42=84\\z=2.48=96\end{cases}}\)
vậy ...
Bài 1 :
a) \(\frac{x}{7}=\frac{18}{14}\)
=> x.14 = 7.18
x.14 = 126
x = 126:14
x = 9
b) \(\frac{6}{x}=\frac{7}{4}\)
=> \(x=\frac{6.4}{7}=\frac{24}{7}\)
c) Theo mình đề thế này mới đúng \(\frac{5,7}{0,35}=\frac{\left(-x\right)}{0,45}\)
=> 5,7.0,45 = 0,35.(-x)
2,565 = 0,35.(-x)
(-x) = 2,565:0,35
(-x) = 513/70
=> -x = -513/70
x = 513/70
Bài 2 : Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
\(\frac{x}{2}=2\)
x = 2.2
x = 4
\(\frac{y}{4}=2\)
y = 2.4
y = 8
\(\frac{z}{6}\) = 2
z = 2.6
z = 12
Vậy x=4 ; y=8 và z=12
b) Theo đề bài, ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{2}=\frac{z}{5}\) và x+y+z=50
\(\Rightarrow\frac{x}{4}=\frac{y}{6};\frac{y}{6}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{15}=\frac{x+y+z}{4+6+15}=\frac{50}{25}=2\)
- \(\frac{x}{4}=2.4=8\)
- \(\frac{y}{6}=2.6=12\)
- \(\frac{z}{15}=2.15=30\)
Vậy x=8,y=12,z=30.
e) Theo đề bài, ta có:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\)
\(=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (vì x+y+z khác 0). Do đó x+y+z=0,5
Thay kết quả này vào đề bài ta được:
\(\frac{0,5-x+1}{x}=\frac{0,5-y+2}{y}=\frac{0,5-z-3}{z}=2\)
tức là: \(\frac{1,5-x}{x}=\frac{2,5-y}{y}=\frac{\left(-2,5\right)-z}{z}=2\)
Vậy \(x=\frac{1}{2},y=\frac{5}{6},z=\frac{\left(-5\right)}{6}\)
^...^ ^_^
a)Ta có:
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{96}{16}=6\)
\(\Rightarrow\begin{cases}\frac{x}{10}=6\\\frac{y}{15}=6\\\frac{z}{21}=6\end{cases}\)\(\Rightarrow\begin{cases}x=60\\y=90\\z=126\end{cases}\)
Vậy x=60;y=90;z=126
b)Vì \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{6}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{x}{6}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x}{6}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{12}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{12-36+20}=\frac{6}{-4}\)
\(\Rightarrow\begin{cases}\frac{x}{6}=-\frac{6}{4}\\\frac{y}{12}=-\frac{6}{4}\\\frac{z}{20}=-\frac{6}{4}\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=-18\\z=-30\end{cases}\)
Vậy x=-9;y=-18;z=-30
CÁC BN GIẢI GIÚP MK BÀI NÀY VỚI
TÌM X, Y , Z
\(\frac{X}{Y+Z+1}=\frac{Y}{X+Z+2}=\frac{Z}{X+Y-3}=X+Y+Z\)
+)Xét x+y+z khác 0
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y+z+1}=\frac{y}{x+z+2}=\frac{z}{x+y-3}=\frac{x+y+z}{y+z+1+x+z+2+x+y-3}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=>x+y+z=1/2
\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+2\\2z=x+y-3\end{cases}\Rightarrow\hept{\begin{cases}3x=x+y+z+1\\3y=x+y+z+2\\3z=x+y+z-3\end{cases}\Rightarrow}\hept{\begin{cases}3x=\frac{1}{2}+1\\3y=\frac{1}{2}+2\\3z=\frac{1}{2}-3\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}}\)
+)Xét x+y+z=0
=>x/y+z+1=y/x+z+2=z/x+y-3=0
=>x=y=z=0
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=4\)
\(\Rightarrow\frac{y}{4}=2\Rightarrow y=8\)
\(\Rightarrow\frac{z}{6}=2\Rightarrow z=12\)
Áp dụng tc dãy tỉ:
\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)
\(\Rightarrow\begin{cases}\frac{x}{2}=2\\\frac{y}{4}=2\\\frac{z}{6}=2\end{cases}\)\(\Rightarrow\begin{cases}x=4\\y=8\\z=12\end{cases}\)