Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có, quy tắc chuyển vế của phương trình giống quy tắc chuyển vế của bất phương trình, nhưng quy tắc nhân hai vế của phương trình với cùng một số khác 0 không thể chuyển thành quy tắc nhân hai vế của bất phương trình với cùng một số khác 0, bởi vì bất phường trình sẽ đổi chiều khi ta nhân hai vế của nó với một số âm.
Khi biến đổi phương trình mà làm mất mẫu chứa ẩn của phương trình thì phương trình nhận được:
A . luôn không tương đương với phương trình ban đầu
B . có thể không tương đương với phương trình ban đầu
C. luôn tương đương với phương trình ban đầu
+) Đáp án A: a > b ó a – 3 > b – 3
Vậy ý A đúng chọn luôn ý A
+) Đáp án B: -3a + 4 > -3b + 4 ó -3a > -3b ó a < b trái với giải thiết nên B sai
+) Đáp án C: 2a + 3 < 2b + 3 ó 2a < 2b ó a < b trái với giả thiết nên C sai.
+) Đáp án D: -5b – 1 < -5a – 1 ó -5a < -5a ó b > a trái với giả thiết nên D sai.
Đáp án cần chọn là: A
vd đc k bn, theo như cách bn ns thì mìh cho là k nhưg theo cách khác nhau thì nó tùy trường hợp đó bn!
mk chỉ vd đơn giản thôi nhé
\(\left(x+y\right)^2:\left(x+y\right)\)
Đặt x+y = a, ta được:
\(a^2:a=a\)
kiểu như thế, có cần phải thay lại x+y ko
ý mk hỏi thế
Được dùng nhé bạn
Nếu đã biến đổi tương đương rồi thì cần gì phải dùng tính chất của bất đẳng thức nữa bạn, bằng không ta dùng bất đẳng thức để chứng minh luôn
VD: chứng minh $a;b;c>0$ thì $a^2+b^2+c^2 \geq ab+bc+ca$
C1: Áp dụng bất đẳng thức Cauchy có:
$a^2+b^2 \geq 2ab;b^2+c^2 \geq 2bc;c^2+a^2 \geq 2ac$
suy ra $2(a^2+b^2+c^2) \geq 2(ab+bc+ca)$
và ta có đpcm
C2 Biến đổi tương đương
BĐT $⇔2.(a^2+b^2+c^2) \geq 2.(ab+bc+ca)$
$⇔(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2) \geq 0$
$⇔(a-b)^2+(b-c)^2+(c-a)^2 \geq 0$ (luôn đúng)
Vậy bất đẳng thức đã được chứng minh
Tóm lại là dùng cũng không sao, miễn đúng là được, nhưng mình khuyên rằng nên làm theo 1 hương thôi.