Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2x+1+4}{2x+1}=1+\dfrac{4}{2x+1}\)
A min khi 2x+1=-1
=>x=-1
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
\(A=3x-x^2\)
\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)
\(B=25+2x-x^2\)
\(=-\left(x^2-2x+1-26\right)\)
\(=-\left(\left(x-1\right)^2-26\right)\)
\(=26-\left(x-1\right)^2\ge26\)
Min A = 26 khi \(x-1=0=>x=1\)
\(C=x^2-5x+19\)
\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)
@@@ nha các bạn . Thanks
a, => x^3 < 0 ; x-3 > 0 hoặc x^3 > 0 ; x-3 < 0
=> 0 < x < 3
b, => x^4.(2x-8) < 0
=> x^4.(x-4) < 0
Vì x^4 >= 0
=> x-4 < 0
=> x < 4
c, Vì x-1 < x+12
=> x-1 < 0 ; x+12 >0
=> -12 < x < 1
d, => x-12 > 0 ; x-1 > 0 hoặc x-12 < 0 ; x-1 < 0
=> x >12 hoặc x < 1
Tk mk nha
\(\dfrac{2\text{x}-1}{3}=\dfrac{3\text{x}+1}{4}\)
\(\Leftrightarrow=\dfrac{4\left(2\text{x}-1\right)}{12}=\dfrac{3\left(3\text{x}+1\right)}{12}\)
\(\Leftrightarrow8\text{x}-4=9\text{x}+3\)
\(\Leftrightarrow8\text{x}-9\text{x}=3+4\)
\(\Leftrightarrow-x=7\)
\(\Leftrightarrow x=-7\)