K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2017

Do M thuộc đường thẳng 2x-y+3=0 nên gọi M(x;2x+3)

gọi G là trọng tâm tam giác ABC

ta có G(-1;4/3)

ta chứng minh được \(3\overrightarrow{MG}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\)

=> \(\overrightarrow{3MG}\)=(3.(-1-x);3(4/3-2x-3))

=(-3-x;-5-6x)

=> độ dài \(\overrightarrow{3MG}\)=\(\sqrt{\left(-3-x\right)^2+\left(-5-6x\right)^2}\)=\(\sqrt{37x^2+66x+34}=\sqrt{37\left(x^2+2\frac{33x}{37}+\frac{33^2}{37^2}+\frac{169}{1369}\right)}=\sqrt{37\left(x+\frac{33}{37}\right)^2+\frac{169}{37}}\) vậy GTNN của đọ dài tổng ba véc tơ là \(\frac{13}{\sqrt{37}}\)

đó là đọ dài véc tơ chứ không phải dấu giá trị tuyệt đối đâu nhé

nếu mình sai sót chỗ nào thì bạn cứ theo hướng đó mà làm sẽ ra thôi

22 tháng 2 2017

thank you bạn

13 tháng 8 2018

Đáp án D

Do M thuộc d nên M( x; 2x+ 3)

Suy ra:

Do đó:

nhỏ nhất khi và chỉ khi: f(x) = 45x2+ 78x + 34  nhỏ nhất

27 tháng 12 2023

a)  Gọi E là trung điểm AB \(\Rightarrow\) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IE}\)

 \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)

\(2\overrightarrow{IE}+3\overrightarrow{IC}=\overrightarrow{0}\)

A B C E I M d

b) \(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|\)

\(=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|\)

\(=5MI\)

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|min\Leftrightarrow MImin\)

                                           \(\Leftrightarrow\) M là hình chiếu của I trên d

NV
24 tháng 12 2020

Gọi \(M\left(x;y\right)\Rightarrow\left(x+3\right)^2+\left(y+4\right)^2=1\)

\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y\right)\\\overrightarrow{MB}=\left(-2-x;1-y\right)\\\overrightarrow{MC}=\left(3-x;4-y\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(2-3x;7-3y\right)\)

\(T^2=\left(3x-2\right)^2+\left(3y-7\right)^2\)

Đặt \(\left(x+3;y+4\right)=\left(a;b\right)\Rightarrow a^2+b^2=1\)

\(T^2=\left(3a-11\right)^2+\left(3b-19\right)^2\)

\(T^2=9\left(a^2+b^2\right)-66a-114b+482=491-6\left(11a+19b\right)\)

Ta lại có:

\(\left(11a+19b\right)^2\le\left(11^2+19^2\right)\left(a^2+b^2\right)=482\)

\(\Rightarrow11a+19b\ge-\sqrt{482}\)

\(\Rightarrow T^2\le491+6\sqrt{482}\)

\(\Rightarrow T\le\sqrt{491+6\sqrt{482}}\)

Số liệu bài toán cho xấu 1 cách phi lý và vô nghĩa

24 tháng 12 2020

Cảm ơn anh rất nhiều ạ

NV
2 tháng 1

\(\overrightarrow{AB}=\left(-6;-3\right)=-3\left(2;1\right)\Rightarrow\) đường thẳng AB nhận \(\left(2;1\right)\) là 1 vtcp

Phương trình tham số đường thẳng AB có dạng: \(\left\{{}\begin{matrix}x=5+2t\\y=4+t\end{matrix}\right.\)

Do M thuộc AB nên tọa độ M có dạng \(M\left(5+2t;4+t\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-2t;-t\right)\\\overrightarrow{MC}=\left(-2-2t;-6-t\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MC}=\left(-2-4t;-6-2t\right)\)

Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MC}\right|=\sqrt{\left(-2-4t\right)^2+\left(-6-2t\right)^2}=\sqrt{20\left(t+1\right)^2+20}\ge\sqrt{20}\)

Dấu "=" xảy ra khi \(t+1=0\Rightarrow t=-1\Rightarrow M\left(3;3\right)\)

5 tháng 9 2019

a) \(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\Rightarrow2\overrightarrow{IA}-\overrightarrow{IA}-\overrightarrow{AB}+\overrightarrow{IA}+\overrightarrow{AC}=\overrightarrow{0}\)

\(\Rightarrow2\overrightarrow{AI}=\overrightarrow{AC}-\overrightarrow{AB}\Rightarrow\overrightarrow{AB}+2\overrightarrow{AI}=\overrightarrow{AC}\). Từ đó suy ra cách dựng điểm I:

A B C I

b) Với cách lấy điểm I như trên, ta có điểm I cố định. Khi đó MN đi qua I, thật vậy:

\(\overrightarrow{MN}=2\overrightarrow{MA}-\overrightarrow{MB}+\overrightarrow{MC}=2\overrightarrow{MI}+2\overrightarrow{IA}-\overrightarrow{MI}-\overrightarrow{IB}+\overrightarrow{MI}+\overrightarrow{IC}\)

\(=2\overrightarrow{MI}+\left(2\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}\right)=2\overrightarrow{MI}\)

Suy ra I là trung điểm MN hay MN đi qua điểm I cố định (đpcm).

c) \(\overrightarrow{MP}=\frac{1}{2}\overrightarrow{MB}+\frac{1}{2}\overrightarrow{MN}=\overrightarrow{MA}+\frac{1}{2}\overrightarrow{MC}\)

Đặt K là điểm sao cho \(\overrightarrow{KA}+\frac{1}{2}\overrightarrow{KC}=\overrightarrow{0}\Rightarrow\hept{\begin{cases}K\in\left[AC\right]\\KA=\frac{1}{2}KC\end{cases}}\)tức K xác định

Khi đó \(\overrightarrow{MP}=\overrightarrow{MK}+\overrightarrow{KA}+\frac{1}{2}\overrightarrow{MK}+\frac{1}{2}\overrightarrow{KC}=\frac{3}{2}\overrightarrow{MK}\), suy ra MP đi qua K cố định (đpcm).

25 tháng 9 2019

MA+MC= MA-MB

<=> 2 MI=BA

=> MI=BA/2

=> I thuộc đường tròn I bán kính AB/2

25 tháng 9 2019

nãy mk quên giải thik: 

a, gọi I la trung điểm của AC=> MA+MC=2MI

hok tốt