K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2022

`2x - 3 = 5`

`<=> 2x = 5 + 3`

`<=> 2x = 8`

`=> x = 4`

Vậy `S = {4}`

_____________________

`3x - 4 = 11`

`<=> 3x = 11 + 4`

`<=> 3x = 15`

`=> x = 5`

Vậy `S = {5}`

______________

`(2x + 1)(x - 3) = 0`

`<=>` $\left[\begin{matrix} 2x + 1 = 0\\ x - 3 = 0\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x = 1/2\\ x = 3\end{matrix}\right.$

Vậy `S = {1/2; -3}`

__________________

`(2x - 3)(x + 2) = 0`

`<=>` $\left[\begin{matrix} 2x - 3 = 0\\ x + 2 = 0\end{matrix}\right.$

`<=>` $\left[\begin{matrix} x = 3/2\\ x = -2\end{matrix}\right.$

Vậy `S = {-2; 3/2}`

4 tháng 5 2021

Gọi độ dài q.đg AB là x ( km, x>0)

T. gian đi là : \(\dfrac{x}{45}\left(h\right)\)

T. gian về là: \(\dfrac{x}{30}\left(h\right)\)

Vì ccar đi, về và nghỉ là: 7h

\(< =>\dfrac{x}{45}+\dfrac{x}{30}+1=7\)

\(< =>2x+3x=630-90\)

5x=540

x=108

Vậy....

13 tháng 1 2022

hic cíu mng oi

 

a: ĐKXĐ: \(x\notin\left\{10;-10;\sqrt{10};-\sqrt{10}\right\}\)

b: \(A=\dfrac{5x^3+50x+2x^2+20+5x^3-50x-2x^2+20}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

\(=\dfrac{10x^3+40}{\left(x^2-10\right)\left(x^2+10\right)}\cdot\dfrac{x^2-100}{x^2+4}\)

=>x-9>0 hoặc x-3<0

=>x<3 hoặc x>9

10 tháng 5 2023

cụ thể hơn được ko bạn mình chưa hiều lắm

 

a: \(4x^2-4x\)

\(=4x\cdot x-4x\cdot1\)

\(=4x\left(x-1\right)\)

b: \(x^2-2xy+y^2-4\)

\(=\left(x-y\right)^2-2^2\)

\(=\left(x-y-2\right)\left(x-y+2\right)\)

1 tháng 11 2023

`4x^2-4x`

`= 4x(x-1)`

__

`x^2 -2xy +y^2-4`

`= (x^2-2xy+y^2)-2^2`

`=(x-y)^2 -2^2`

`=(x-y-2)(x-y+2)`

4 tháng 5 2022

hiha

4 tháng 5 2022

Hiuhiu hộ tớ đi ạ

20 tháng 6 2020

Đặt \(A=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\)

Ta có: \(\hept{\begin{cases}\left|x-2021\right|=\left|2021-x\right|\\\left|x-2020\right|=\left|2020-x\right|\end{cases}}\)

Ta lại có: \(\hept{\begin{cases}\left|x-2018\right|+\left|2021-x\right|\ge\left|x-2018+2021-x\right|=3\\\left|x-2019\right|+\left|2020-x\right|\ge\left|x-2019+2020-x\right|=1\end{cases}}\)

 \(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|+\left|x-2021\right|\ge1+3=4\)

 \(\Rightarrow A_{min}=4\)

Dấu '=' xảy ra khi: \(\hept{\begin{cases}\left(x-2018\right).\left(2021-x\right)\ge0\\\left(x-2019\right).\left(2020-x\right)\ge0\end{cases}}\)

                        \(\Rightarrow\hept{\begin{cases}2018\le x\le2021\\2019\le x\le2020\end{cases}}\)\(\Rightarrow2018\le x\le2020\)

Vậy \(A_{min}=4\)\(\Leftrightarrow\)\(2018\le x\le2020\)

Nếu các bạn chưa hiểu chỗ suy ra ở chỗ dấu bằng xảy ra thì bạn hãy lập bảng xét dấu nhé ^_^

@#@@# Chúc bn hok tốt #@#@!

Đề bài đâu rồi bạn?

5 tháng 12 2021

undefined

5 tháng 12 2021

Bài 4:

\(\left\{{}\begin{matrix}a^4+b^4\ge2a^2b^2\\b^4+c^4\ge2b^2c^2\\c^4+a^4\ge2a^2c^2\end{matrix}\right.\\ \Leftrightarrow2\left(a^4+b^4+c^4\right)\ge2\left(a^2b^2+b^2c^2+c^2a^2\right)\\ \Leftrightarrow a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\left(1\right)\\ \left\{{}\begin{matrix}a^2b^2+b^2c^2\ge2ab^2c\\b^2c^2+c^2a^2\ge2abc^2\\c^2a^2+a^2b^2\ge2a^2bc\end{matrix}\right.\\ \Leftrightarrow2\left(a^2b^2+b^2c^2+c^2a^2\right)\ge2\left(a^2bc+ab^2c+abc^2\right)\\ \Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)\left(2\right)\\ \left(1\right)\left(2\right)\Leftrightarrow a^4+b^4+c^4\ge abc\left(a+b+c\right)\)

Dấu \("="\Leftrightarrow a=b=c\)

a: \(9x^3y^2+3x^2y^2\)

\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)

\(=3x^2y^2\left(3x+1\right)\)

b: \(x^2-2x+1-y^2\)

\(=\left(x^2-2x+1\right)-y^2\)

\(=\left(x-1\right)^2-y^2\)

\(=\left(x-1-y\right)\left(x-1+y\right)\)

1 tháng 11 2023

Cảm ơn bạn nhiều bạn, mong bạn sẽ giúp mình nhiều hơn nữa ạ