K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

a)

undefined

25 tháng 7 2019

thế còn b,c,d,e,f có lm đc ko ạ

18 tháng 2 2021

 a) 3x2 – 7x + 2

\(=3x^2-6x-x+2\)

\(=\left(3x^2-6x\right)-\left(x-2\right)\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

 b) a(x2 + 1) – x(a2 + 1)

\(=ax^2+a-\left(a^2x+x\right)\)

\(=a\left(x^2+1\right)-x\left(a^2+1\right)\)

.......?

 

 

 

 

a) Ta có: \(3x^2-7x+2\)

\(=3x^2-6x-x+2\)

\(=3x\left(x-2\right)-\left(x-2\right)\)

\(=\left(x-2\right)\left(3x-1\right)\)

b) Ta có: \(a\left(x^2+1\right)-x\left(a^2+1\right)\)

\(=x^2a+a-a^2x-x\)

\(=\left(x^2a-a^2x\right)+\left(a-x\right)\)

\(=xa\left(x-a\right)-\left(x-a\right)\)

\(=\left(x-a\right)\left(xa-1\right)\)

c) Ta có: \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+120-24\)

\(=\left(x^2+7x\right)^2+22\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)^2+16\left(x^2+7x\right)+6\left(x^2+7x\right)+96\)

\(=\left(x^2+7x\right)\left(x^2+7x+16\right)+6\left(x^2+7x+16\right)\)

\(=\left(x^2+7x+16\right)\left(x^2+7x+6\right)\)

\(=\left(x^2+7x+16\right)\left(x+1\right)\left(x+6\right)\)

d) Ta có: \(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)

\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+15\)

\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)^2+12\left(a^2+8a\right)+10\left(a^2+8a\right)+120\)

\(=\left(a^2+8a\right)\left(a^2+8a+12\right)+10\left(a^2+8a+12\right)\)

\(=\left(a^2+8a+12\right)\left(a^2+8a+10\right)\)

\(=\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)

24 tháng 7 2019

a) \(x\left(x-5\right)-4x+20=0\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{4;5\right\}\)

24 tháng 7 2019

b) \(x\left(x+6\right)-7x-42=0\)

\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)

Vậy tập nghiệm của pt là \(S=\left\{-6;7\right\}\)

18 tháng 8 2017

chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha

18 tháng 8 2017

a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)

b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)

c)\(-2\left(x-4\right)\left(2x+1\right)\)

d)\(\left(x-5\right)\left(4x+1\right)\)

e)\(3\left(x-2\right)\left(3x-2\right)\)

g)\(2\left(a-b\right)^2\)

h)\(\left(xy-3\right)\left(5y^2-2z\right)\)

i)\(\left(4x+1\right)\left(2x-y\right)\)

l)\(abc^2\left(b-a\right)\left(b+c\right)\)

m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)

12 tháng 7 2018

câu a chắc bạn tự làm được 
câu b) \(x^2+2x\left(y+1\right)+y^2+2y+1\)
=\(x^2+2xy+2x+y^2+2y+1\)
=\(\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1\)
\(\left(x+y\right)^2+2\left(x+y\right)+1=10000\)
câu c) từ đề bài 
=> \(b^2-3b+a^2+3a-2ab=\left(b^2-2ab+a^2\right)-3\left(b-a\right)=\left(b-a\right)^2-3\left(b-a\right)\)
bạn thay b-a vào rồi tính.

câu d: \(Taco:\left(x-y\right)^3=x^3-3x^2y+3xy^2-y^3=x^3-y^3-3xy\left(x-y\right)=1\)
theo đề x-y =-1 => \(x^3-y^3+3xy=1\) 
câu e tt
câu f:Ta có \(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+a^2c^2\right)=0\)(2)
mà \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)
theo đề \(a^2+b^2+c^2=1\)=> \(2\left(ab+bc+ac\right)=-1=>ab+bc+ac=-\frac{1}{2}\)(1)
bình phương biểu thức 1 lên ta được \(\left(ab+bc+ac\right)^2=\left(a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\right)=\frac{1}{4}\)
có a+b+c=0 nên \(a^2b^2+b^2c^2+a^2c^2=\frac{1}{4}\)
thay vào giá trj của biểu thức trên vào (2) đến đây bạn chỉ cần tính là ra \(a^4+b^4+c^4\)

12 tháng 7 2018

cảm ơn bạn