Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-6x^2-x+6=0\)
\(\Leftrightarrow x^2\left(x-6\right)-\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=1\\x=-1\end{matrix}\right.\)
Vậy ................................
\(x^3-6x^2+11x-6=0\\ \Leftrightarrow\left(x^3-x^2\right)-\left(5x^2-5x\right)+\left(6x-6\right)=0\\ \Leftrightarrow x^2\left(x-1\right)-5x\left(x-1\right)+6\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-5x+6\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
\(x^3+4x^2+x+6=0\)
\(\Leftrightarrow\text{ (x + 3).(x + 2).(x - 1) = 0 }\)
<=>
Tự làm nhé mk nhẩm ko nhầm là dậy :D
\(x^3+4x^2+x-6=x^3-x^2+5x^2-5x+6x-6=x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)=\left(x-1\right)\left(x^2+5x+6\right)=\left(x-1\right)\left(x^2+2x+3x+6\right)=\left(x-1\right)\left(x+2\right)\left(x+3\right)\)
chúc bạn học tốt
x3-6x2+11x-6=0
⇔x3-x2-5x2+5x+6x-6=0
⇔(x3-x2)-(5x2-5x)+(6x-6)=0
⇔x2(x-1)-5x(x-1)+6(x-1)=0
⇔(x-1)(x2-5x+6)=0
⇔(x-1)(x2-2x-3x+6)=0
⇔(x-1)[(x2-2x)-(3x-6)]=0
⇔(x-1)[x(x-2)-3(x-2)]=0
⇔(x-1)(x-2)(x-3)=0
=>\(\left\{{}\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\)
Vậy S={1;2;3}
x3-4x2+x+6=0
⇔x3+x2-5x2-5x+6x+6=0
⇔(x3+x2)-(5x2-5x)+(6x+6)=0
⇔x2(x+1)-5x(x+1)+6(x+1)=0
⇔(x+1)(x2-5x+6)=0
⇔(x+1)(x2-2x-3x+6)=0
⇔(x+1)[(x2-2x)-(3x-6)]=0
⇔(x+1)[x(x-2)-3(x-2)]=0
⇔(x+1)(x-2)(x-3)=0
⇔\(\left[{}\begin{matrix}x+1=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=3\end{matrix}\right.\)
vậy S={-1;2;3}
Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)
\(6x^2+7x-36+\frac{7}{x}+\frac{6}{x^2}=0\)
\(\Leftrightarrow6\left(x^2+\frac{1}{x^2}\right)+7\left(x+\frac{1}{x}\right)-36=0\)
Đặt \(x+\frac{1}{x}=a\) (\(\left|a\right|\ge2\)) \(\Rightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(6\left(a^2-2\right)+7a-36=0\)
\(\Leftrightarrow6a^2+7a-48=0\)
Nghiệm xấu
x3-3x2+4=0
⇔x3+x2-4x2-4x+4x+4=0
⇔(x3+x2)-(4x2+4x)+(4x+4)=0
⇔x2(x+1)-4x(x+1)+4(x+1)=0
⇔(x+1)(x2-4x+4)=0
⇔(x+1)(x-2)2=0
=>\(\left\{{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
vậy S={-1;2}