K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

a) Do \(9^9\) là số lẻ nên \(9^9\) chia có 2 dư 1. Vì vậy \(9^9=2k+1\).
Ta có \(9^{9^9}=9^{2k+1}=\left(9^2\right)^k.9=\left(...1\right)^k.9=...9\).
b) Chữ 2 chữ số tận cùng của \(2^{999}\) cũng là số dư của \(2^{999}\)khi chia cho 100.
Ta có \(100=2^2.5^2\).
Gọi x là số dư của \(2^{999}\) khi chia cho 100. Ta có: \(\left\{{}\begin{matrix}2^{999}\equiv x\left(mod25\right)\\2^{999}=x\left(mod2^2\right)\end{matrix}\right.\).
Do \(2^{999}⋮4\) nên \(x\equiv0\left(mod2^2\right)\).
\(\varphi\left(25\right)=20\). Áp dụng định lý Euler ta có: \(2^{20}\equiv1\left(mod25\right)\).
\(2^{999}=\left(2^{20}\right)^{49}.2^{19}\). Từ đó suy ra \(2^{999}\equiv1^{49}.2^{19}\left(mod25\right)\equiv2^{19}\left(mod25\right)\).
\(2^{19}=524288\) mà 524288 chia 25 dư 13.nên \(2^{19}\equiv13\left(mod25\right)\).
Vì vậy \(\left\{{}\begin{matrix}x\equiv0\left(mod4\right)\\x\equiv13\left(mod25\right)\end{matrix}\right.\).
Những số nhỏ hơn 100 mà chia cho 25 dư 13 là: 13; 38; 63; 88. Do x chia hết cho 4 nên x = 88.
Vậy hai chữ số tận cùng của \(2^{999}\) là 88.

30 tháng 11 2017

Dạ e cảm ơn cô

2 tháng 9 2018

bạn ra đề khó quá

là số 192 nha bạn 

mình ngồi bấm máy đó mình ko biết đồng thức dư là gì 

chúc bạn học tốt nha

11 tháng 11 2017

tính tổng các dãy sau :
A = 1 + 2 + 22+…+ 2100
         B = 3 – 32 + 33 – …   – 3100
Bài giải:
                 A = 1 + 2 + 22 + …+ 2 100
Nhân a = 2 cho hai vế :
2A = 2 + 22 + 23 + …+ 2101
             tính : 2A – A = (2 + 22 + 23 + …+ 2101 ) – (1 +2 + 22+ …+2100)
Vậy     A = 2101 – 1
B = 3 – 32 + 33 – … – 3100
Nhân a = 3 cho hai vế : 3B = 32 – 33 + 34 – … –  3101
Tín : B + 3B = (3 – 33 + 33) – …- 3100) + ( 32 – 23 +34 – … – 3101)
4B = 3 – 3101
Vậy     B = ( 3- 3101) : 4

3 tháng 8 2022

sai

30 tháng 6 2017

910≡01(mod100)
⇒92010≡(910)201≡1(mod100)
⇒92010=100k+1(k∈Z)
⇒A=2100k+1=(2100)k.2≡376k.2≡376.2≡752(mod1000)
 

 
5 tháng 12 2021

a) Ta có: \(3^{555}=3^{552}.3^3\)

Ta lại có: \(3^{552}=3^4.3^4.....3^4=81.81.....81\) (138 thừa số)

\(\Rightarrow3^{552}=\overline{...1}\)

Ta lại có nữa: \(3^3=\overline{...7}\)

Vậy \(3^{555}=\overline{...1}.\overline{...7}=\overline{...7}\)

b) Ta có: \(\left(2^7\right)^9=2^{63}=2^{60}.2^3\)

Ta lại có: \(2^{60}=2^4.2^4.....2^4=16.16.....16\) (15 thừa số)

\(\Rightarrow2^{60}=\overline{...6}\)

Ta lại có nữa \(2^3=8\)

Vậy \(\left(2^7\right)^9=\overline{...6}.8=\overline{...8}\)

 

 

5 tháng 12 2021

.