Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+x-3y=1\\ \Leftrightarrow4xy+2x-6y-2=0\\ \Leftrightarrow2x\left(2y+1\right)-3\left(2y+1\right)=-1\\ \Leftrightarrow\left(2x-3\right)\left(2y+1\right)=-1\)
Từ đó bạn suy ra các trường hợp thôi
\(xy-2y=x^2+4\)
\(\Leftrightarrow y\left(x-2\right)=x^2+4\)
- Với \(x=2\) không phải nghiệm của pt
- Với \(x\ne2\)
\(\Rightarrow y=\dfrac{x^2+4}{x-2}=\dfrac{x^2-4+8}{x-2}=x+2+\dfrac{8}{x-2}\)
Do \(y\in Z\Rightarrow\dfrac{8}{x-2}\in Z\Rightarrow x-2=Ư\left(8\right)\)
\(\Rightarrow x-2=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow x=\left\{-6;-2;0;1;3;4;6;10\right\}\)
Thay x tương ứng vào \(y=\dfrac{x^2+4}{x-2}\) ta được các cặp nghiệm nguyên của pt:
\(\left(x;y\right)=\left(-6;-5\right);\left(-2;-2\right);\left(0;-2\right);\left(1;-5\right);\left(3;13\right);\left(4;10\right);\left(6;10\right);\left(10;13\right)\)
Lời giải:
Giả sử pt có nghiệm nguyên $(x,y)$ đi.
$3x^2=2001-28y^2$ lẻ $\Rightarrow x$ lẻ. Đặt $x=2k+1$ với $k$ nguyên
$\Rightarrow 3(2k+1)^2+28y^2=2001$
$\Leftrightarrow 12k^2+12k+28y^2=1998$
Ta thấy vế trái chia hết cho $4$ mà vế phải $1998$ chia $4$ dư $2$
Do đó pt không có nghiệm nguyên.
Em gửi câu hỏi r mak
đây nek
Tìm bộ 3 số nguyên tố a,b,c sao cho a^2+b^2+c^2=abc
bằng 157844654
cảm ơn