K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(C=\frac{a\sqrt{a}-1}{a-\sqrt{a}}+\frac{\sqrt{a}-1}{\sqrt{a}}\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\frac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}-1}{\sqrt{a}}\cdot\left(\frac{\left(\sqrt{a}+1\right)^2+\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right)\)

\(=\frac{a+\sqrt{a}+1}{\sqrt{a}}+\frac{\sqrt{a}-1}{\sqrt{a}}\cdot\frac{2a+2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}+\frac{a+\sqrt{a}+1}{\sqrt{a}}\)

\(=\frac{2\left(a+1\right)}{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}+\frac{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

\(=\frac{2a+2+a\sqrt{a}+2a+2\sqrt{a}+1}{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}\)

\(=\frac{a\sqrt{a}+4a+2\sqrt{a}+3}{\sqrt{a}\cdot\left(\sqrt{a}+1\right)}\)

14 tháng 10 2022

\(\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{\sqrt{a}+a}\right)+\left(\dfrac{\sqrt{a}-1}{\sqrt{a}}\right)\cdot\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

\(=2+\dfrac{1}{\sqrt{a}+1}\cdot\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2a+2}{\sqrt{a}\left(\sqrt{a}+1\right)}=\dfrac{4a+2\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}+1\right)}\)

19 tháng 7 2020

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

AH
Akai Haruma
Giáo viên
8 tháng 12 2021

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.

9 tháng 11 2017

\(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}=\dfrac{1}{\sqrt{c}}\Rightarrow\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)^3=\dfrac{1}{\sqrt{c}^3}\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}}\left(\dfrac{1}{\sqrt{a}}+\dfrac{1}{\sqrt{b}}\right)-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{a}^3}+\dfrac{1}{\sqrt{b}^3}+\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}-\dfrac{1}{\sqrt{c}^3}=0\)

\(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{a}^3}-\dfrac{1}{\sqrt{b}^3}=\dfrac{3}{\sqrt{a}.\sqrt{b}.\sqrt{c}}\)

\(\sqrt{a}.\sqrt{b}.\sqrt{c}\left(\dfrac{1}{\sqrt{c}^3}-\dfrac{1}{\sqrt{b}^3}-\dfrac{1}{\sqrt{a}^3}\right)=3\)

\(\dfrac{\sqrt{ab}}{c}-\dfrac{\sqrt{bc}}{a}-\dfrac{\sqrt{ca}}{b}=3\left(\text{đ}pcm\right)\)

30 tháng 6 2016

Ta có:a, |2x-1|= |2x+3|

<=> 2x - 1 = -(2x + 3) 

=> 2x + 2x = 3 + 1

=> 4x = 4

=> x = 1

\(\left(\dfrac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\cdot\dfrac{1-\sqrt{a}}{1-a}\)

\(=\left(\sqrt{a}+1\right)^2\cdot\dfrac{1}{\sqrt{a}+1}\)

\(=\sqrt{a}+1\)

27 tháng 8 2019

Bài 1:

a. \(\sqrt{\frac{25m^2}{49}}=\frac{\sqrt{25m^2}}{\sqrt{49}}=\frac{5m}{7}\)

b. \(\frac{\sqrt{192k}}{\sqrt{3k}}=\sqrt{\frac{192k}{3k}}=\sqrt{64}=8\)

Bài 2:

a. \(\frac{a+\sqrt{a}}{\sqrt{a}}=\frac{\left(\sqrt{a}\right)^2+\sqrt{a}}{\sqrt{a}}=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}}=\sqrt{a}+1\)

b. \(\frac{\sqrt{a}-a}{\sqrt{a}-1}=\frac{\sqrt{a}-\left(\sqrt{a}\right)^2}{\sqrt{a}-1}=\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{\sqrt{a}-1}=\frac{-\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}=-\sqrt{a}\)

c. \(\frac{a-b}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}=\sqrt{a}+\sqrt{b}\)

27 tháng 8 2019

Câu a là căn 25m^2/49 nhé