Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x^3-3x^2-7x+x^2-3x-7}{x^2-3x-7}=x+1\)
b:\(=\dfrac{x^3+x^2+3x^2+3x+5x+5}{x+1}=x^2+3x+5\)
c:\(=\dfrac{x^3-3x^2-7x+2x^2-6x-14}{x^2-3x-7}=x+2\)
d: \(=\dfrac{x^2\left(x+5\right)+5x+25-25}{x+5}=x^2+5-\dfrac{25}{x+5}\)
\(a,x^3\times y-2\) Tại x=-3 và y=2 thay vào biểu thức, ta có:
\(x^3\times y-2=\left(-3\right)^3\times2-2=\left(-27\right)\times2-2=\left(-54\right)-2=-56\)
\(b,x^3-5x+3\) Tại x=2 thay vào biểu thức, ta có:
\(x^3-5\times x+3=2^3-5\times2+3=8-10+3=1\)
\(c,x^2\times5x=5x^3\) Tại x=-1 thay vào biểu thức, ta có:
\(5x^3=5\times\left(-1\right)^3=5.\left(-1\right)=-5\)
\(d,5-xy^3\) Tại x=2, y=1 thay vào biểu thức, ta có:
\(5-xy^3=5-2\times\left(1\right)^3=5-2\times1=5-2=3\)
a)Tại x=-3,y=2 giá trị biểu thức là
\(-3^3\cdot2-2=-56\)
b)Tại x=2 giá trị biểu thức là
\(2^3-5\cdot2+3=8-10+3=1\)
c)Tại x=-1 giá trị biểu thức là
\(\left(-1\right)^2\cdot5\left(-1\right)=1\cdot\left(-5\right)=-5\)
d)Tại x=2,y=1 giá trị biểu thức là
\(5-2\cdot1^3=5-2=3\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)
\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)
\(=\dfrac{30-15}{15}=1\)
\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1
\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6
\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6
\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6
\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6
\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6
Vậy x1=x2=x3=x4=x5 =6
x1 = 13 ; x2 = 10 ; x3 = 7
=> x1.x2-x2.x3=13.10-10.7=130-70=60
a)\(A=1+x+x^2+x^3+..........+x^{2012}\)
+)Thay x=1 vào biểu thức đc:
\(A=1+1+1^2+1^3+..............+1^{2012}\)
Có 2013 số hạng
\(\Rightarrow A=1.2013=2013\)
b)\(B=1-x+x^2-x^3+..............-x^{2011}\)
\(\Rightarrow B=\left(1-x\right)+\left(x^2-x^3\right)+............+\left(x^{2010}-x^{2011}\right)\)
+)Thay x=1 vào biểu thức được:
\(B=\left(1-1\right)+\left(1^2-1^3\right)+...........+\left(1^{2010}-1^{2011}\right)\)
\(\Rightarrow B=0+0+......................+0=0\)
+)\(C=A+B\Rightarrow C=2013+0\Rightarrow C=2013\)
Vậy C=2013
Chúc bn học tốt
a) \(\left(x^3-3x^2+2x-6\right):\left(x-3\right)\)
\(=\left[x^2\left(x-3\right)+2\left(x-3\right)\right]:\left(x-3\right)\)
\(=\left[\left(x-3\right)\left(x^2+2\right)\right]:\left(x-3\right)\)
\(=x^2+2\)
b) \(\left(x^3-8\right):\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+2x+4\right):\left(x-2\right)\)
\(=x^2+2x+4\)
\(C=\left(5^3-1\right)\cdot\left(5^3-2\right)\cdot...\cdot\left(5^3-125\right)\cdot...\cdot\left(5^3-2014\right)\cdot\left(5^3-2015\right)=0\)