Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(25\left(x-2\right)^2-100\left(y-3\right)^2\)
\(=\left(5x-10\right)^2-\left(10y-30\right)^2\)
\(=\left(5x-10-10y+30\right)\left(5x-10+10y-30\right)\)
\(=\left(5x-10y+20\right)\left(5x+10y-40\right)\)
\(=25\left(x-2y+4\right)\left(x+2y-8\right)\)
b, \(4\left(x+3\right)^2-9\left(x+2\right)^2\)
\(=\left(2x+6\right)^2-\left(3x+6\right)^2\)
\(=\left(2x+6-3x-6\right)\left(2x+6+3x+6\right)\)
\(=-x\left(5x+12\right)\)
c, \(x^2-10x-y^2+25\)
\(=\left(x-5\right)^2-y^2\)
\(=\left(x-y-5\right)\left(x+y-5\right)\)
d, \(x^2-4x-y^2+4\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)
e, \(\left(x^2+2\right)^2-2\left(x^2+2\right)+1\)
\(=\left(x^2+2-1\right)^2\)
\(=\left(x^2+1\right)^2\)
x=9
=>x+1=10
\(A=x^{10}-10x^9+10x^8-...+10x^2-10x+1\)
\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-...+x^2\left(x+1\right)-x\left(x+1\right)+1\)
\(=x^{10}-x^{10}-x^9+x^8+...+x^3+x^2-x^2-x+1\)
=-x+1
=-9+1=-8
c) Đặt \(f\left(x\right)=x^{10}-10x+9\)
Giả sử \(f\left(x\right)⋮\left(x-1\right)^2\)
\(\Rightarrow f\left(x\right)=\left(x-1\right)^2Q\left(x\right)\)
\(\Leftrightarrow f\left(1\right)=\left(1-1\right)^2Q\left(1\right)\)
\(=0\)
\(\Leftrightarrow1^{10}-10.1+9=0\)
\(\Leftrightarrow0=0\)( đúng)
\(\Rightarrow\)điều giả sử đúng
\(\Rightarrow f\left(x\right)⋮\left(x-1\right)^2\left(đpcm\right)\)
e) \(E=x^5-15x^4+16x^3-29x^2+13x\) tại x = 14
\(E=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+x\left(x-1\right)\)
\(E=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(E=-x\)
\(E=-14\)
d) \(D=x^3-30x^2-31+1\) tại x = 31
\(D=31^3-30.31^2-31+1\)
\(D=31^2\left(31-30-1\right)+1\)
\(D=0+1\)
\(D=1\)
a,\(=x^3+x^2-\left(31x^2+31x\right)\)
\(=x^2\left(x+1\right)-31x\left(x+1\right)\)
\(=\left(x^2-31x\right)\left(x+1\right)=\left(31^2-31^2\right)\left(31+1\right)=0\)
b, Phân tích 3 số hạng đầu ta có:\(=x^5-x^4-\left(14x^4-14x^3\right)=\left(x^4-14x^3\right)\left(x-1\right)=\left(14^4-14^4\right)\left(x-1\right)=0\)
Thay x= 14 vào ta có: \(-29.14^2+13.14=-5502\)
c, do x=9 => x+1=10; Thay vào ta có:
\(C=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-...+\left(x+1\right)x^2-\left(x+1\right)x+10\)
\(C=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-....+x^3+x^2-x^2-x+10\)
\(C=-x+10=-9+10=1\)
CHÚC BẠN HỌC TỐT.....
x=9 ⇒ 10= x+1 thay vào C ta đc
C = x14- (x+1).x13 +........ - (x+1).x +x+1
⇒C = x14-x14-x13+........ -x2 -x +x+1
⇒C =1
mk làm tóm tắt ít số hơn nếu bạn muốn dễ hiểu thì thay nhiều cái vào
`a,x^2+2x+1=9`
`<=>x^2+2.x.1+1^2=9`
`<=>(x+1)^2=3^2`
`<=>(x+1)^2=+-3`
\(\Leftrightarrow\left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)
`b, x^2-4x-21=0`
`<=>x^2+3x-7x-21=0`
`<=>x(x+3) - 7(x+3)=0`
`<=>(x+3)(x-7)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
`c,x^2+10x-24=0`
`<=>x^2+12x-2x-24=0`
`<=>x(x+12)-2(x+12)=0`
`<=>(x+12)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x+12=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-12\\x=2\end{matrix}\right.\)
a: =>(x+1)^2=9
=>(x+1+3)(x+1-3)=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: =>x^2-7x+3x-21=0
=>(x-7)(x+3)=0
=>x=7;x=-3
c: =>x^2+12x-2x-24=0
=>(x+12)(x-2)=0
=>x=2 hoặc x=-12
a: =>5x-5+17x=1-12x-4
=>22x-5=-12x-3
=>34x=2
hay x=1/17
b: =>\(\left(x-3\right)^2-4x\left(x-3\right)=0\)
=>(x-3)(-3x-3)=0
=>x=3 hoặc x=-1
c: =>(x-4)(x-6)=0
=>x=4 hoặc x=6
tks mn