Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}.\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-\left(6x-x^2-9\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{1}{\left(x+3\right)^2}+\frac{-1}{-6x+x^2+9}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3}{\left(x+3\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(C=\frac{x-3.-x-3.x}{\left(x+3\right).\left(x-3\right)}=\frac{-6x}{\left(x+3\right)\left(x-3\right)}=\frac{-6x}{\left(x^2-9\right)}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
1/(x^2+6x+9)-1/(x^2-6x+9)=(x-3)/(x-3)(x+3)-(x+3)/(x-3)(x+3)= -6/(x-3)(x+3)
1/(x+3)+1/(x-3)=
\(\frac{3x}{5x+5y}-\frac{x}{10x-10y}\)
= \(\frac{3x\left(x-y\right)}{5.2.\left(x+y\right)\left(x-y\right)}-\frac{x\left(x+y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x^2-3xy-x^2-xy}{10\left(x^2-y^2\right)}\)
= \(\frac{3x\left(x-y\right)}{10\left(x^2-y^2\right)}\)
= \(\frac{3x}{10\left(x+y\right)}\)
a)có khả năng sai đề bài
b)Liệu có sai đề bài không
c)\(=\frac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)(phân số cuối có âm vì (1-x)=-(x-1)
\(=\frac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)(Hơi tắt)
\(=\frac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{1}{x^2+x+1}\)
d)\(=\frac{x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}+\frac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{x^2+2xy+x^2-2xy+4xy}{\left(x-2y\right)\left(x+2y\right)}\)
\(=\frac{2x^2+4xy}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x\left(x+2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{2x}{x-2y}\)
a) \(\frac{1}{x+3}+\frac{x}{x^2-6x+9}\left(x\ne\pm3\right)\)
\(=\frac{1}{x+3}+\frac{x}{\left(x-3\right)^2}=\frac{\left(x-3\right)^2}{\left(x+3\right)\left(x-3\right)^2}+\frac{x^2+3x}{\left(x+3\right)\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2+3x}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3x+9}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3\left(x-3\right)}{\left(x-3\right)^2\left(x+3\right)}=\frac{-3}{\left(x-3\right)\left(x+3\right)}\)
anhdun_•Ŧ๏áйツɦọς• giải a r nha , tớ giải b+c cho
\(b,\frac{2x}{x^2-9}-\frac{x-1}{x+3}\)
\(\frac{2x}{x^2-3^2}-\frac{x-1}{x+3}\)
\(\frac{2x}{\left(x+3\right)\left(x-3\right)}-\frac{x-1}{x+3}\)
\(\frac{2x-\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{2x-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{\left(2x+3x+x\right)-x^2-3}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{6x-x^2-3}{\left(x+3\right)\left(x-3\right)}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}+\frac{-1}{\left(x-3\right)^2}+\frac{x}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{\left(x-3\right)^2-\left(x+3\right)^2+x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(\frac{1}{x^2+6x+9}+\frac{1}{6x-x^2-9}+\frac{x}{x^2-9}\)
\(=\frac{1}{\left(x+3\right)^2}-\frac{1}{\left(x-3\right)^2}+\frac{x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x-3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}-\frac{\left(x+3\right)^2}{\left(x+3\right)^2\left(x-3\right)^2}+\frac{x\left(x+3\right)\left(x-3\right)}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^2-6x+9-x^2-6x-9+x^3-9x}{\left(x+3\right)^2\left(x-3\right)^2}\)
\(=\frac{x^3-21x}{\left(x+3\right)^2\left(x-3\right)^2}\)