Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=\dfrac{3y+5}{y-1}-\dfrac{-y^2-4y}{y-1}+\dfrac{y^2+y+7}{y-1}\)
\(=\dfrac{3y+5+y^2+4y+y^2+y+7}{y-1}\)
\(=\dfrac{2y^2+8y+12}{y-1}\)
a ) \(\left(2x-1\right)^2+\left(x+4\right)^2+5=2x\left(x+1\right)+\left(x+2\right)^2+2x^2-2x+18\)
\(\Leftrightarrow4x^2-4x+1+x^2+8x+16+5=2x^2+2x+x^2+4x+4+2x^2-2x+18\)
\(\Leftrightarrow5x^2+4x+22=5x^2+4x+22\)
=> PT có vô số nghiệm
b ) \(\dfrac{5x-7}{4}-\dfrac{9x-4}{5}=-x-\dfrac{19-9x}{20}\)
\(\Leftrightarrow\dfrac{25x-35-36x+16}{20}=\dfrac{-20x-19+9x}{20}\)
\(\Leftrightarrow\dfrac{-11x-19}{20}=\dfrac{-11x-19}{20}\)
=> PT có vô số nghiệm
c ) \(\left|y-3\right|=y-3\)
TH 1 : \(y\ge3\)
\(\Rightarrow y-3\ge0\Rightarrow\left|y-3\right|=y-3\)
Do \(\left|y-3\right|=y-3\)
\(\Rightarrow y-3=y-3\)
Nên : \(y\ge3\) , PT vô số nghiệm
TH 2 : \(y< 3\Rightarrow y-3< 0\Rightarrow\left|y-3\right|=3-y\)
Do \(\left|y-3\right|=y-3\)
\(\Rightarrow3-y=y-3\)
\(\Rightarrow3-y-y+3=0\)
\(\Rightarrow6-2y=0\)
\(\Rightarrow y=3\) ( L ; do y < 3 )
Vậy \(y\ge3\) thì PT vô số nghiệm
Lời giải
a)
\(\left(\frac{3}{2x-y}-\frac{2}{2x+y}-\frac{1}{2x-5y}\right).\frac{4x^2-y^2}{y^2}\)
\(=\frac{3(4x^2-y^2)}{(2x-y)y^2}-\frac{2(4x^2-y^2)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)
\(=\frac{3(2x-y)(2x+y)}{(2x-y)y^2}-\frac{2(2x-y)(2x+y)}{(2x+y)y^2}-\frac{4x^2-y^2}{(2x-5y)y^2}\)
\(=\frac{3(2x+y)-2(2x-y)}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{2x+5y}{y^2}-\frac{4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{(2x+5y)(2x-5y)-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}\)
\(=\frac{4x^2-25y^2-4x^2}{(2x-5y)y^2}+\frac{1}{2x-5y}=\frac{-25}{2x-5y}+\frac{1}{2x-5y}=\frac{-24}{2x-5y}\)
Ta có đpcm.
b)
\(\frac{x^2-x+1}{x^2+x}.\frac{x+1}{3x-2}.\frac{9x-6}{x^2-x+1}\)
\(=\frac{(x^2-x+1)(x+1).3(3x-2)}{x(x+1)(3x-2)(x^2-x+1)}\)
\(=\frac{3}{x}\) (đpcm)
a: \(=\dfrac{2x-2x+y}{2\left(2x-y\right)}=\dfrac{y}{2\left(2x-y\right)}\)
b: \(=\dfrac{3x+1}{\left(x-1\right)\left(x+1\right)}-\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{6x+2-x^2-x}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+5x+2}{2\left(x-1\right)\left(x+1\right)}\)
c: \(=\dfrac{1}{x+2}+\dfrac{x+8}{3x\left(x+2\right)}\)
\(=\dfrac{3x+x+8}{3x\left(x+2\right)}=\dfrac{4x+8}{3x\left(x+2\right)}=\dfrac{4}{3x}\)
d: \(=\dfrac{4x+6-2x^2+3x+2x+1}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\dfrac{-2x^2+9x+7}{\left(2x-3\right)\left(2x+3\right)}\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
a) \(A = \frac{2x^2 - 16x+43}{x^2-8x+22}\) = \(\frac{2(x^2-8x+22)-1}{x^2-8x+22}\) = \(2 - \frac{1}{x^2-8x+22}\)
Ta có : \(x^2-8x+22 \) = \(x^2-8x+16+6 = ( x-4)^2 +6 \)
Vì \((x-4)^2 \ge 0 \) với \( \forall x\in R\) Nên \(( x-4)^2 +6 \ge 6 \)
\(\Rightarrow \) \(x^2-8x+22 \) \( \ge 6\)\(\Rightarrow \) \(\frac{1}{x^2-8x+22} \) \(\le \frac{1}{6}\) \(\Rightarrow \) - \(\frac{1}{x^2-8x+22} \) \(\ge - \frac{1}{6}\)
\(\Rightarrow \) A = \(2 - \frac{1}{x^2-8x+22}\) \( \ge 2-\frac{1}{6}\) = \(\frac{11}{6}\) Dấu "=" xảy ra khi và chỉ khi x=4
Vậy GTNN của A = \(\frac{11}{6}\) khi và chỉ khi x=4
6:
a: ĐKXĐ: x<>0
\(\dfrac{x^3+3x^2+3x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^3}{x\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x}\)
b: ĐKXĐ: x<>1
\(\dfrac{x^3-3x^2+3x-1}{2x-2}\)
\(=\dfrac{\left(x-1\right)^3}{2\left(x-1\right)}=\dfrac{\left(x-1\right)^2}{2}\)
c: ĐKXĐ: x<>-2
\(\dfrac{x^2+4x+4}{2x+4}\)
\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)
\(=\dfrac{x+2}{2}\)
d: ĐKXĐ: x<>-2
\(\dfrac{\left(x-1\right)\left(-x-2\right)}{x+2}\)
\(=\dfrac{\left(-x+1\right)\left(x+2\right)}{x+2}=-x+1\)
e: ĐKXĐ: x<>-y
\(\dfrac{x^2-y^2}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{x+y}=x-y\)
g: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{-3x^2-6x}{4-x^2}=\dfrac{3x^2+6x}{x^2-4}\)
\(=\dfrac{3x\left(x+2\right)}{\left(x+2\right)\cdot\left(x-2\right)}=\dfrac{3x}{x-2}\)
7:
a: \(\dfrac{2}{5x^3y^2}=\dfrac{2\cdot4}{20x^3y^2}=\dfrac{8}{20x^3y^2}\)
\(\dfrac{3}{4xy}=\dfrac{3\cdot5\cdot x^2y}{20x^3y^2}=\dfrac{15x^2y}{20x^3y^2}\)
b: \(\dfrac{x}{x^2-2xy+y^2}=\dfrac{x}{\left(x-y\right)^2}\)
\(\dfrac{x}{x^2-xy}=\dfrac{x}{x\left(x-y\right)}=\dfrac{1}{x-y}=\dfrac{\left(x-y\right)}{\left(x-y\right)^2}\)
c: \(\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{2}{2x+4}=\dfrac{2}{2\left(x+2\right)}=\dfrac{1}{x+2}=\dfrac{6}{6\left(x+2\right)}\)
\(\dfrac{3}{3x+6}=\dfrac{3}{3\left(x+2\right)}=\dfrac{6}{6\left(x+2\right)}\)
d:
\(\dfrac{2}{2x-6}=\dfrac{2}{2\left(x-3\right)}=\dfrac{1}{x-3};\dfrac{3}{3x-9}=\dfrac{3}{3\left(x-3\right)}=\dfrac{1}{x-3}\)
\(\dfrac{2}{2x-6}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{3}{3x-9}=\dfrac{1}{x-3}=\dfrac{x+3}{\left(x-3\right)\left(x+3\right)}\)
\(\dfrac{1}{x+3}=\dfrac{x-3}{\left(x+3\right)\left(x-3\right)}\)
a: \(=\dfrac{4xy+x^2-2xy+y^2}{2\left(x+y\right)\left(x-y\right)}\cdot\dfrac{2x}{x+y}-\dfrac{y}{x-y}\)
\(=\dfrac{x}{x-y}-\dfrac{y}{x-y}=1\)
b: \(=\dfrac{x^2+x-2-2x^2-2x}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{3\left(x+1\right)}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{-x^2-x-2}{\left(x-1\right)}\cdot\dfrac{3}{x}+\dfrac{4x^2+x+7}{x\left(x-1\right)}\)
\(=\dfrac{4x^2+x+7-3x^2-3x-6}{x\left(x-1\right)}=\dfrac{x^2-2x+1}{x\left(x-1\right)}=\dfrac{x-1}{x}\)
c: \(=\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}\)
\(=\dfrac{x+7-x-4}{\left(x+7\right)\left(x+4\right)}=\dfrac{3}{\left(x+4\right)\left(x+7\right)}\)
a) ĐKXD: x ≠ 2
\(\dfrac{1}{x-2}+3=\dfrac{3-x}{x-2}\)
\(\Leftrightarrow\dfrac{1}{x-2}-\dfrac{3-x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{1-3+x}{x-2}=-3\)
\(\Leftrightarrow\dfrac{-2+x}{x-2}=-3\)
\(\Leftrightarrow-2+x=-3\left(x-2\right)\)
\(\Leftrightarrow-2+x=-3x+6\)
\(\Leftrightarrow x+3x=6+2\)
\(\Leftrightarrow4x=8\)
\(\Leftrightarrow x=2\) (loại vì không thỏa mãn điều kiện)
Vậy S = ∅
b) ĐKXĐ: x ≠ 7
\(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)
\(\Leftrightarrow\dfrac{8-x}{x-7}-\dfrac{1}{x-7}=8\)
\(\Leftrightarrow\dfrac{7-x}{x-7}=8\)
\(\Leftrightarrow-1=8\left(vô-lý\right)\)
Vậy S = ∅
P/s: Ko chắc ạ!
c) ĐKXĐ: x ≠ 1
\(\dfrac{1}{x-1}+\dfrac{2x}{x^2+x+1}=\dfrac{3x^2}{x^3-1}\)
Quy đồng và khử mẫu ta được:
\(x^2+x+1+2x\left(x-1\right)=3x^2\)
\(\Leftrightarrow x^2+x+1+2x^2-2x-3x^2=0\)
\(\Leftrightarrow-x+1=0\)
\(\Leftrightarrow x=1\) (loại vì ko t/m đk)
Vậy S = ∅
c) \(\dfrac{y^4-1}{y^3+y^2+y+1}\)
\(=\dfrac{\left(y^2+1\right)\left(y^2-1\right)}{y^2\left(y+1\right)+\left(y+1\right)}\)
\(=\dfrac{\left(y^2+1\right)\left(y+1\right)\left(y-1\right)}{\left(y+1\right)\left(y^2+1\right)}\)
\(=y-1\)
d) \(\dfrac{2x^2-9x+7}{-2x^2-x+28}\)
\(=\dfrac{2x^2-2x-7x+7}{-\left(2x^2+8x-7x-28\right)}\)
\(=\dfrac{2x\left(x-1\right)-7\left(x-1\right)}{-\left(2x-7\right)\left(x+4\right)}\)
\(=-\dfrac{\left(2x-7\right)\left(x-1\right)}{\left(2x-7\right)\left(x+4\right)}\)
\(=\dfrac{1-x}{x+4}\)