K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Hình vẽ:

undefined

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:
a) 

Theo định lý tổng 3 góc trong tam giác:

$\widehat{D}+\widehat{E}+\widehat{F}=180^0$

$\Rightarrow \widehat{E}+\widehat{F}=180^0-\widehat{D}=180^0-60^0=120^0$

Mà tam giác $DEF$ cân tại $D$ nên $\widehat{E}=\widehat{F}$

Do đó:

$\widehat{E}=\widehat{F}=\frac{120^0}{2}=60^0$

b) 

Xét tam giác $ABM$ và $ACM$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$\widehat{B}=\widehat{C}$ (do $ABC$ cân tại $A$)

$BM=CM$ (do $M là trung điểm $BC$)

$\Rightarrow \triangle ABM=\triangle ACM$ (c.g.c)

14 tháng 3 2021

a> ta có : góc E = góc F = 400 ( vì tam giác DEF cân tại D)

Tam giác DEF có : góc D+ góc E + góc F = 1800

                               góc D + 400 +400 = 1800

                               \(\Rightarrow\)góc D = 1800 - 400-400= 1000

14 tháng 3 2021

b> Xét tam giác DEM và tam giác DFM có:

            AM : cạnh chung

           EDM = FDM( vì DM là phân giác của góc D)

           DE=DF ( vì tam giác DEF cân tại D)

Do đó : tam giác DEM = tam giác DFM ( c.g.c)

 

16 tháng 2 2020

a)Ta thấy: tam giác ABC là tam giác cân, do AD vuông góc BC nên AD vừa là đường cao của tam giác đồng thời vừa là tia phân giác, đường trung tuyến của tam giác của tam giác ABC. Do D thuộc đường cao AD, mà DE và DF lần lượt thuộc hai cạnh bên của tam giác nên DE=DF. Từ đó suy ra tam giác DEF cân.

b) Xét tam giác BED vuông tại E và tam giác CDF vuông tại F ta có:

DB=DC(AD là đường trung tuyến của tam giác cân ABC)

\(\widehat{B}=\widehat{C}\)(tam giác ABC cân)

Suy ra \(\Delta BED=\Delta CDF\)(cạnh huyền - góc nhọn)

16 tháng 2 2020

c) Theo đề bài, \(\widehat{ABC}=30^o\)nên lúc này \(\widehat{ACB}=30^{^{ }o}\)

Cũng từ đó: \(\widehat{BAC}=180^o-30^{^{ }o}-30^{^{ }o}=120^o\)

Do \(\widehat{BAC}\)kề bù với \(\widehat{MAB}\)nên \(\widehat{MAB}=180^{o^{ }}-120^o=60^o\)(1)

Lại thấy: AD vuông góc với BC, MB//AD nên MB vuông góc BC. Suy ra \(\widehat{ABC}\)phụ \(\widehat{MBA}\)và \(\widehat{MBA}=90^o-30^o=60^o\)(2)

Từ (1) và (2), suy ra \(\widehat{AMB}=180^o-60^{o^{ }}-60^o=60^o\)và tam giác ABM đều.

a: Xét ΔDME và ΔDNF có 

\(\widehat{MDE}\) chung

DE=DF

\(\widehat{DEM}=\widehat{DFN}\)

Do đó; ΔDME=ΔDNF

b: Xét ΔINE và ΔIMF có 

\(\widehat{NEI}=\widehat{MFI}\)

NE=MF

\(\widehat{ENI}=\widehat{FMI}\)

Do đó: ΔINE=ΔIMF

c: Ta có: ΔINE=ΔIMF

nên IE=IF

Xét ΔDIE và ΔDIF có

DI chung

IE=IF

DE=DF

Do đó: ΔDIE=ΔDIF

Suy ra: \(\widehat{EDI}=\widehat{FDI}\)

hay DI là tia phân giác của góc D

3 tháng 8 2017

a, Áp dụng định lí Py-ta-go vào tam giác vuông ABC, ta có:

BC^2 = AB^2 + AC^2

         = 8^2 + 6^2 

         = 100

=> BC = 10.

b, Áp dụng tính chất đường trung tuyến của tam giác , ta có:

EC = 2/3 AC; AE = 1/3 AC.

Mà AC = 6.

 => EC = 2/3*6 = 4.

      EA = 1/3*6 = 2.

c) ko biết làm

3 tháng 8 2017

a Áp dụng định lí pytago vào tg ABC 

\(AB^2\)+\(AC^2\)=\(BC^2\)<=> 6^2+8^2=BC^2<=> BC=10

b, Xét tg BDC có  2 đường trung tuyến BK và CA cắt nhau tại E

=> E là trọng tâm tgBDC

=> CE=2/3.AC=2/3.6=4cm

=> AE=AC-CE=6-4=2cm

c,Xét tg BCD có CA vừa là đường cao vừa là đường tung tuyến

=> tgBCD cân tại c (đpcm)

Đặt x=góc BAC

=>góc ABC=góc ACB=90 độ-1/2*x

góc DAC=góc ACD=x

góc ABC=góc BDC=90 độ-x/2

=>góc DCB=180 độ-2*góc BAC=x

góc ACD+góc DCB=góc ABC=90 độ-x/2

=>5/2*x=90

=>x=36

=>góc BAC=36 độ