Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi
a: \(A=1000-\left|x+5\right|\le1000\forall x\)
Dấu '=' xảy ra khi x=-5
b: \(\left|x-3\right|+50\ge50\forall x\)
Dấu '=' xảy ra khi x=3
\(B=\left|5-x\right|+\left(y-1\right)^2+2019\)
Ta có: \(\hept{\begin{cases}\left|5-x\right|\ge0\\\left(y-1\right)^2\ge0\Rightarrow\end{cases}}\)\(B=\left|5-x\right|+\left(y-1\right)^2+2019\ge2019\)
\(\Rightarrow B_{min}=2019\Leftrightarrow\hept{\begin{cases}x=5\\y=1\end{cases}}\)
Vậy GTNN của B là 2019
Ta có:
\(|5-x|\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow B=|5-x|+\left(y-1\right)^2+2019\ge2019\)
\(\Rightarrow Min_B=2019\)
Giá trị nhỏ nhất của B là 2019 tại x =5 và y = 1