K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
3 tháng 8 2021

\(f\left(x\right)=-\frac{1}{3}x^3-\left(m-1\right)x^2+\left(m-7\right)x-2\)

\(f'\left(x\right)=-x^2-2\left(m-1\right)x+\left(m-7\right)\)

Để \(f'\left(x\right)\le0\)với mọi \(x\)thì

\(\hept{\begin{cases}-2< 0\\\Delta'\le0\end{cases}}\Leftrightarrow\left(m-1\right)^2+\left(m-7\right)=m^2-m-6\le0\)

\(\Leftrightarrow\left(m-3\right)\left(m+2\right)\le0\)

\(\Leftrightarrow-2\le m\le3\)

19 tháng 1 2022

con hươu A nha,tick cho 1 cái đi,ko đúng ko tick cũng được nha

20 tháng 6 2023
Con hươu cao cổ B thấp hơn vì:  A)Con hươu cao cổ B có 9 phần cổ. B)Con hươu cao cổ A có 12 phần cổ.

 

20 tháng 8 2016

limdim

20 tháng 8 2016

lolangBiện luận số số nghiệm, số giao điểm của đồ thi

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 17:

\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)

\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)

Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)

\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)

\(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)

\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2017

Câu 11)

Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)

\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)

\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)

\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)

Đáp án C

Câu 20)

Ta có:

\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)

\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)

\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)

Đáp án A.

24 tháng 2 2017

a) goi I la trung diem AB => I(1/2 ; 0 ;3/2)

b) G(2/3 ; 0 ;4/3)

c) gia su ABCD la hinh binh hanh , D(a,b,c) , vecto AB=(-1;2;1), vecto DC=(1-a;-b;1-c)

vi ABCD la hbh nen co vto AB=vto DC nen co hpt:

-1=1-a

2=-b

1=1-c

Giai hpt tim dc D=(2;-2;0)

24 tháng 2 2017

a) goi I la trung diem AB ta co I=(1/2 ; 0; 3/2)

b) G=(2/3 ; 0 ; 4/3)

c) gia su ABCD la hinh binh hanh ta co : vecto AB = vecto DC; vecto AB=(-1;2;1)

gsu D=(a,b,c) => vecto DC =(1-a; -b ; 1-c)

vi ABCD la hinh binh hanh nen co vto AB= vto DC

<=>he: -1=1-a

2=-b

1=1-c

Giai he => a=2 ; b=-2 ; c= 0 . Vay D=(2;-2;0)

AH
Akai Haruma
Giáo viên
3 tháng 2 2017

Bạn cần làm bải nào?

3 tháng 2 2017

Chắc là bài 4 đó chị. Đây là chủ đề khối đa diện => Hình :))

21 tháng 6 2016

tất cả các câu đều chọn A, B, C hoặc D

AH
Akai Haruma
Giáo viên
23 tháng 11 2017

Lời giải:

Đặt \(2^{x^2}=t\). Khi đó \(t\geq 1\)

PT trở thành: \(t^2-4t+6=m\Leftrightarrow t^2-4t+(6-m)=0\) (*)

Tư duy:

Nếu (*) có 1 nghiệm duy nhất thì $x^2$ là duy nhất, do đó pt ban đầu chỉ có thể có nhiều nhất 2 nghiệm

Nếu (*) có 2 nghiệm đều khác 1, khi đó $x^2$ có hai giá trị đều khác $0$, kéo theo pt ban đầu có 4 nghiệm

Như vậy, để PT ban đâu có 3 nghiệm thì (*) phải có 2 nghiệm phân biệt , trong đó một nghiệm bằng $1$. Bởi vì khi đó, nghiệm $t$ khác 1 sẽ cho 2 giá trị của $x$, nghiệm $t=1$ cho giá trị $x=0$ duy nhất.

Vậy (*) có nghiệm là $1$, tức là

\(1^2-4.1+(6-m)=0\Leftrightarrow 3-m=0\Leftrightarrow m=3\)

Thử lại thấy thỏa mãn

Đáp án D