Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(\frac{1}{4}-2x\right)^2\ge0,\left|8x-1\right|\ge0\)
=> \(-\frac{1}{5}\left(\frac{1}{4}-2x\right)^2\le0,-\left|8x-1\right|\le0\)
=> \(C\le0+0\)+2016=2016
"=" xảy ra <=> \(\hept{\begin{cases}\frac{1}{4}-2x=0\\8x-1=0\end{cases}\Leftrightarrow}x=\frac{1}{8}\)
Vậy C đạt giá trị lớn nhất là 2016 khi x=1/8
Câu 1:
Ta thấy:
\(\left(x-\frac{2}{5}\right)^2\ge0\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2\ge0\)
\(\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|\ge0\)
\(\Rightarrow\frac{1}{3}\cdot\left(x-\frac{2}{5}\right)^2+\left|2y+1\right|-2,5\ge-2,5\)
hay \(A\ge-2,5\)
Dấu "=" xảy ra khi \(\begin{cases}\left(x-\frac{2}{5}\right)^2=0\\\left|2y+1\right|=0\end{cases}\)
\(\Rightarrow\begin{cases}x-\frac{2}{5}=0\\2y+1=0\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\2y=-1\end{cases}\)
\(\Rightarrow\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
Vậy GTNN của A là -2,5 đạt được khi \(\begin{cases}x=\frac{2}{5}\\y=-\frac{1}{2}\end{cases}\)
GTLN là 2016 nha bạn
Số hạng đầu tiên có [1/4-2n]2 luôn dương
=>-1/5[1/4-2n]2 luôn âm
..........
Quốc Huy phải giải rõ ra chứ.Như mình nè:
Ta có:[1/4-2n]^2>=0
suy ra;-1/5[1/4-2n]<=0 (1)
Lại có:|8x-1|>=0
suy ra : -|8x-1|<=0 (2)
Từ (1) và (2) suy ra:-1/5[1/4-2n]^2-|8x-1|<=0
suy ra:-1/5[1/4-2n]^2-|8x-1|+2016 <=2016
suy ra D<=2016
suy ra giá trị lớn nhất của D là 2016 khi 1/4-2n=0 và 8x-1=0
*Với 1/4-2n=0 suy ra 2n=1/4 suy ra n=1/4:2=1/4.1/2 suy ra n=1/8
*Với 8x-1=0 suy ra 8x=1 suy ra x=1/8
Vậy giá trị lớn nhất của D là 2016 khi n=1/8 và x=1/8