K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

√A xác định khi A > 0 hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm.

4 tháng 5 2018

√A xác định khi A > 0 hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm.

22 tháng 4 2017

\(\sqrt{ }\)A xác định khi A > 0 hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm.

2 tháng 10 2017

Khi và chỉ khi A>hoặc = 0

22 tháng 12 2016

a) \(P=\left(\frac{\sqrt{x}}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}-\frac{2}{4-x}\right):\frac{\sqrt{x}+3}{\sqrt{x}-2}\left(ĐK:x\ge0;x\ne4\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}-2+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

\(=\frac{x+2\sqrt{x}+\sqrt{x}}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\sqrt{x}+2}\cdot\frac{1}{\sqrt{x}+3}=\frac{\sqrt{x}}{\sqrt{x}+2}\)

b) Vì: \(\sqrt{x}+4>0,\forall x\inĐK\)

=> \(2\sqrt{x}+4>\sqrt{x}\)

=> \(\frac{\sqrt{x}}{2\sqrt{x}+4}< 0\)

=> \(\frac{\sqrt{x}}{\sqrt{x}+2}< 2\)

=>đpcm

4 tháng 12 2019

Xét :

+) \(n=3k\left(k\in N\right)\)

Ta có: \(M=2017^{3k}+2017.3k+\left(3k\right)^{2017}⋮3\)

<=> \(2017^{3k}⋮3\)vô lí vì \(2017:3\)dư 1 nên \(2017^{3k}:3\)dư 1

+) \(n=3k+1\left(k\in N\right)\)

Ta có: \(M=2017^{3k+1}+2017.\left(3k+1\right)+\left(3k+1\right)^{2017}\equiv1+1+1\equiv0\left(mod3\right)\)

=> \(M⋮3\)

+)  \(n=3k+2\left(k\in N\right)\)

Ta có: \(M=2017^{3k+2}+2017.\left(3k+2\right)+\left(3k+2\right)^{2017}\equiv1+2+2^{2017}\equiv1+2+\left(-1\right)^{2017}\equiv2\left(mod3\right)\)

=> \(M⋮̸3\)

Vậy n = 3k +1 ( k là số tự nhiên ) thì M chia hết cho 3.

NV
22 tháng 7 2021

Không em, phải thỏa cả ĐKXĐ ban đầu chứ

Do đó \(x=-2\) \(\Rightarrow A=-1\) mới là GTNN của A

17 tháng 8 2021

ĐKXĐ: \(x^2-4x+16\ge0\Rightarrow\left(x^2-4x+4\right)+12\ge0\) (luôn đúng)