Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\) vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) , ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x>y>0\\3x^2+3y^2=10xy\end{matrix}\right.\)
Bạn thiếu đề thì phải: x>y>0.
Ta có : \(3x^2+3y^2=10xy\)
=>\(x^2+y^2=\frac{10xy}{3}\)
Ta có x>y>0=>x-y>0 và x+y>0
=>P dương. (1)
Ta có P2=\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)\(=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{10xy}{3}-2xy}{\frac{10xy}{3}+2xy}=\frac{\frac{4}{3}}{\frac{16}{3}}=\frac{1}{4}\)(2)
Từ (1) và (2) => \(P=\frac{1}{2}\)
Có: \(3x^2+3y^2=10xy\)
\(\Leftrightarrow3x^2-9xy-xy+3y^2=0\)
\(\Leftrightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Leftrightarrow\left(x-3y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3y=0\\3x-y=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3y\left(KTM:y>x\right)\\3x=y\left(tm\right)\end{cases}}\)
Với \(3x=y\) , ta có: \(K=\frac{x+y}{x-y}=\frac{x+3x}{x-3x}=\frac{4x}{-2x}=-2\)
K2= (\(\frac{X+Y}{X-Y}\))2 = \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\)= \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
= \(\frac{3x^2+6xy+3y^2}{3x^2-6xy+3y^2}\)= \(\frac{10xy+6xy}{10xy-6xy}\)= \(\frac{16xy}{4xy}\)= 4
=> K = -2 hoặc 2
mà y>x>0 nên K =\(\frac{x+y}{x-y}\)<0
=> K = -2
,(3x-1) mũ 2=9/16
<=> (3x-1)^2 = ( ±3/4)^2
<=> l3x-1l = 3/4
Hoặc 3x-1 = 3/4
<=> 3x= 3/4 + 1
<=> x = 7/4 : 3
<=> x= 7/1
\(M=6x^2+4y^2+6xy+\left(xy+\dfrac{4x}{y}\right)+\left(3xy+\dfrac{3y}{x}\right)+2022\)
\(M\ge3x^2+y^2+3\left(x+y\right)^2+2\sqrt{\dfrac{4x^2y}{y}}+2\sqrt{\dfrac{9xy^2}{x}}+2022\)
\(M\ge3\left(x^2+1\right)+\left(y^2+4\right)+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge6x+4y+3\left(x+y\right)^2+4x+6y+2015\)
\(M\ge3\left(x+y\right)^2+10\left(x+y\right)+2015\ge3.3^2+10.3+2015=2072\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(1;2\right)\)
2) Bạn làm phép chia đa thức cho đa thức, kẻ hẳn dấu chia ra như tiểu học ấy. Được kết quả là \(\left(4y^2+1\right)\) dư (-2y+6) nhé.
3) a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
b) \(\left(x^2+1\right)\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x^2+1=0\) hoặc x-3=0 hoặc x+2=0
Trường hợp 1 loại vì \(x^2\) không âm, hai trường hợp còn lại tìm được x=3 và x = -2.
4) a)\(x^2-y^2+2y-1=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
b) \(5x^2-10xy-20z^2+5y^2\)
= \(5\left(x^2-2xy-4z^2+y^2\right)\)
= \(5\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)
= 5 ( x-y-2z ) ( x-y+2z )
5) \(x^3=x\Leftrightarrow x=\pm1\)
dễ mà bn. chuyển 10xy sang sau đó phân tích đa thức thành nhân tử
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\)vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x>y>0\\3x^2+3y^2=10xy\end{cases}}\)