K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2018

Chọn C.

Từ giả thiết suy ra 3S = 3 + 2.32 + 3.33 + … + 11.311. Do đó

-2S = S – 3S = 1 + 3 + 32 + … + 310 – 10.311

Vì 

19 tháng 2 2018

Chọn C

Từ giả thiết suy ra 3 S = 3 + 2.3 2 + 3.3 3 + ... + 11.3 11 . Do đó 

− 2 S = S − 3 S = 1 + 3 + 3 2 + ... + 3 10 − 11.3 11 = 1. 1 − 3 11 1 − 3 − 11.3 11 = − 1 2 − 21.3 11 2 ⇒ S = 1 4 + 21 4 .3 11 .

vì 

S = 1 4 + 21.3 11 4 = a + 21.3 b 4 ⇒ a = 1 4 ,    b = 11 ⇒ P = 1 4 + 11 4 = 3.

NV
29 tháng 3 2022

\(S=1.3^0+2.3^1+3.3^2+...+11.3^{10}\)

\(3S=1.3^1+2.3^2+...+11.3^{11}\)

\(\Rightarrow S-3S=1+3^1+3^2+...+3^{10}-11.3^{11}\)

\(\Rightarrow-2S=1.\dfrac{3^{11}-1}{3-1}-11.3^{11}\)

\(\Rightarrow-2S=\dfrac{1}{2}.3^{11}-\dfrac{1}{2}-11.3^{11}\)

\(\Rightarrow-2S=-\dfrac{21.3^{11}+1}{2}\)

\(\Rightarrow S=\dfrac{1}{4}+\dfrac{21.3^{11}}{4}\)

Mọi người giải giúp mk với ạ Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1. Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1 Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10 Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10. Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, . Câu 318. Cho...
Đọc tiếp

Mọi người giải giúp mk với ạ

Câu 313. Giá trị đúng của lim Vn(n+1-In-1) là: A.-1. B. 0. D. +o. C. 1.

Câu 314. Cho dãy số (un) với un = (n-1), 2n +2 . Chọn kết quả đúng của limu, là: %3D n' +n? -1 A. -00. B. 0. D. +oo, C. 1. 5" -1

Câu 315. lim- bằng : 3" +1 A. +oo. D. -co. B. 1. C. 0. 10

Câu 316. lim bằng : Vn* +n? +1 C. 0. D. -00. A. +oo. B. 10.

Câu 317. lim200 - 3n +2n² bằng : C too. D. -0. B. 1. A. 0. Tìm két quả đúng của limu, .

Câu 318. Cho dãy số có giới hạn (un) xác định bởi : -,n 21 2-u C. -1. D. B. 1. A. 0. 1 1 1 [2

Câu 319. Tìm giá trị đúng của S = 2| 1+-+ 2 48 2" C. 2 2. D. B. 2. A. 2 +1. 4" +2"+1 bằng :

Câu 320. Lim4 3" + 4"+2 1 B. D. +oo. A. 0. In+1-4

Câu 321. Tính giới hạn: lim Vn+1+n C.-1. D. B.O. A. 1. +(2n +1)- * 3n +4 1+3+5+...+ 3n 14,

Câu 322. Tính giới hạn: lim C. 2 3 B. D. 1. A. 0. 1 nlat1) +......+

Câu 323. Tính giới hạn: lim n(n+1) 1.2 2.3 3 C. 21 D. Không có giới hạn. B. 1. A. 0.

0
NV
27 tháng 4 2019

S là tổng cấp số nhân vô hạn với \(\left\{{}\begin{matrix}u_1=1\\q=-\frac{1}{3}\end{matrix}\right.\)

Theo công thức ta có: \(S=\frac{u_1}{1-q}=\frac{1}{1-\left(-\frac{1}{3}\right)}=\frac{3}{4}\)

28 tháng 4 2019

thank bạn nhiều <3

1) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương làA. 2.\(3^{19}\)                          B.\(2.3^{20}\)               C.\(3^{20}\)              D.\(2.3^{21}\)2) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=3^n\) số hạng \(u_{n+1}\) làA. \(3^n+1\)                          B.\(3^n+3\)               C.\(3^n.3\)             D.\(3\left(n+1\right)\)3) cho dãy số \(\left(u_n\right)\) với \(u_n=4^n+2^n\) ba...
Đọc tiếp

1) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=2.3^n\) giá trị của \(u_{20}\) với mọi số nguyên dương là

A. 2.\(3^{19}\)                          B.\(2.3^{20}\)               C.\(3^{20}\)              D.\(2.3^{21}\)

2) cho dãy \(\left(u_n\right)\) xác định bởi \(u_n=3^n\) số hạng \(u_{n+1}\) là

A. \(3^n+1\)                          B.\(3^n+3\)               C.\(3^n.3\)             D.\(3\left(n+1\right)\)

3) cho dãy số \(\left(u_n\right)\) với \(u_n=4^n+2^n\) ba số hạng đầu tiên của dãy là

4) cho dãy số \(\left(u_n\right)\) n ϵ N* biết \(u_n=\dfrac{1}{n+1}\) ba số hạng đầu tiên của dãy số đó là

5) cho dãy số có các số hạng đầu tiên là 5,10,15,20,25,.. số hạng tổng quát của dãy số là

 

1

5: \(u_n=5n\left(n\in N\right)\)

4: Ba số hạng đầu tiên là 1/2;1/3;1/4

3: Ba số hạng đầu tiên là 6;20;72

2C

1B

AH
Akai Haruma
Giáo viên
12 tháng 5 2020

Lời giải:
\(S_{n}=\frac{1}{3^1}-\frac{1}{3^2}+....+\frac{(-1)^{n+1}}{3^n}\)

\(3S_n=1-\frac{1}{3}+....+\frac{(-1)^{n+1}}{3^{n-1}}\)

Cộng theo vế:
\(4S_n=1+\frac{(-1)^{n+1}}{3^n}=1-\left(\frac{-1}{3}\right)^n\)

\(\lim(S_n)=\frac{\lim(4S_n)}{4}=\frac{1}{4}\lim [1-\left(\frac{-1}{3}\right)^n]=\frac{1}{4}\) (nhớ rằng \(\lim\limits q^n=0\) với $|q|< 1$)

Đáp án A.

20 tháng 5 2021

.jkilfo,o7m5ijk

15 tháng 6 2021

 Ta có \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin 5\alpha -2\sin \alpha .\cos 4\alpha -2\sin \alpha .\cos 2\alpha

=\sin 5\alpha -\left(\sin 5\alpha -\sin 3\alpha \right)-\left(\sin 3\alpha -\sin \alpha \right)

=\sin \alpha .

Vậy \sin 5\alpha -2\sin \alpha \left({\cos} 4\alpha +\cos 2\alpha \right)=\sin \alpha

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: A

Dãy số 21; – 3; – 27; – 51; – 75 lập thành một cấp số cộng có số hạng đầu là u1 = 21 và công sai d = – 24.