Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge1\)
\(x-1+\sqrt{5+\sqrt{x-1}}=5\)
Đặt \(\sqrt{x-1}=t\ge0\)
\(\Rightarrow t^2+\sqrt{t+5}=5\)
Đặt \(\sqrt{t+5}=u>0\Rightarrow u^2-t=5\)
\(\Rightarrow t^2+u=u^2-t\Leftrightarrow t^2-u^2+t+u=0\)
\(\Leftrightarrow\left(t+u\right)\left(t-u+1\right)=0\)
\(\Leftrightarrow t-u+1=0\) (do \(t>0;u>0\Rightarrow t+u>0\))
\(\Leftrightarrow t+1=\sqrt{t+5}\)
\(\Leftrightarrow t^2+2t+1=t+5\Leftrightarrow t^2+t-4=0\)
\(\Rightarrow t=\dfrac{-1+\sqrt{17}}{2}\)
\(\Rightarrow x=t^2+1=\dfrac{11-\sqrt{17}}{2}\)
ĐKXĐ: \(x\ge-1\)
Đặt \(\sqrt{x+1}=y\ge0\)
\(\Rightarrow4x^2+12xy=27y^2\)
\(\Leftrightarrow\left(2x-3y\right)\left(2x+9y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3y=2x\\9y=-2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=2x\left(x\ge0\right)\\9\sqrt{x+1}=-2x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=4x^2\left(x\ge0\right)\\81\left(x+1\right)=4x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{81-9\sqrt{97}}{8}\end{matrix}\right.\)
\(\sqrt{2x-1}< 8-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-1\ge0\\8-x\ge0\\2x-1< \left(8-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le8\\x^2-18x+65>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\le8\\\left[{}\begin{matrix}x>13\\x< 5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{2}\le x< 5\)
Đặt \(\sqrt{\dfrac{4x+9}{28}}=y+\dfrac{1}{2}\left(y\ge-\dfrac{1}{2}\right)\).
Ta có hpt:
\(\left\{{}\begin{matrix}14y^2+14y=2x+1\\14x^2+14x=2y+1\end{matrix}\right.\)
\(\Rightarrow14\left(x^2-y^2\right)+16\left(x-y\right)=0\Leftrightarrow\left[{}\begin{matrix}x-y=0\\x+y=\dfrac{-8}{7}\end{matrix}\right.\).
Đến đây thế vào là được.
ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)
\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)
\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)
\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)
Đặt \(\sqrt{x+m}=t\Rightarrow m=t^2-x\)
Pt trở thành:
\(x^2-2x-t=t^2-x\)
\(\Leftrightarrow x^2-t^2-x-t=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=t\\x-1=t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-x=\sqrt{x+m}\left(x\le0\right)\\x-1=\sqrt{x+m}\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=m\left(x\le0\right)\left(1\right)\\x^2-3x+1=m\left(x\ge1\right)\left(2\right)\end{matrix}\right.\)
TH1: (1) có nghiệm duy nhất và (2) vô nghiệm (sử dụng đồ thị hoặc BBT)
\(\Rightarrow\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m< -\dfrac{5}{4}\\\end{matrix}\right.\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
TH2: (1) vô nghiệm và (2) có nghiệm duy nhất
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m=-\dfrac{5}{4}\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{-\dfrac{5}{4}\right\}\cup\left(-1;0\right)\)