Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Giả sử z = x + yi, (x,y ε R), khi đó trên mặt phẳng toạ độ Oxy, điểm M(x;y) biểu diễn số phức z.
a) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1.
Vậy tập hợp điểm biểu diễn số phức z là đường tròn tam O, bán kính bằng 1
b) Ta có |z| ≤ 1 ⇔ ≤ 1 ⇔ x2 + y2 ≤ 1.
Vậy tập hợp điểm biểu diễn số phức z là hình tròn tâm O, bán kính bằng 1 (kể cả các điểm trên đường tròn) (hình b)
c) Ta có 1 < |z| ≤ 2 ⇔ 1 < ≤ 2 ⇔ 1 < x2 + y2 ≤ 4.
Vậy tập hợp điểm biểu diễn số phức z là phần nằm giữa đường tròn tâm O, bán kính bằng 1 (không kể điểm trên đường tròn này) và đường tròn tâm O, bán kính bằng 2 (kể cả các điểm trên đường tròn này)
d) Ta có |z| = 1 ⇔ = 1 ⇔ x2 + y2 = 1 và phần ảo của z bằng 1 tức y = 1. Suy ra x = 0 và y = 1
Vậy tập hợp các điểm cần tìm là điểm A(0;1)
\(\Leftrightarrow z\left(3i+1\right)=\left(\left|z\right|-4\right)i+\left|z\right|+4\)
Lấy module 2 vế:
\(\Rightarrow\left|z\right|.\sqrt{10}=\sqrt{\left(\left|z\right|-4\right)^2+\left(\left|z\right|+4\right)^2}\)
Đặt \(\left|z\right|=x>0\Rightarrow x\sqrt{10}=\sqrt{\left(x-4\right)^2+\left(x+4\right)^2}\)
\(\Leftrightarrow10x^2=2x^2+32\)
\(\Leftrightarrow x^2=4\)
\(\Rightarrow x=2\)
Vậy \(\left|z\right|=2\)
a) Đường phân giác của góc phần tư thứ nhất và góc pần tư thứ ba.
b) Đường phân giác của góc phần tư thứ hai và góc phần tư thứ tư.
c) Đường thẳng y = 2x + 1
d) Nửa đường tròn tâm O bán kính bằng 1, nằm bên phải trục Oy.
\(z=x+y.i\) \(\Rightarrow\overline{z}=x-yi\)
Theo bài ra ta có:
\(\frac{1}{z}=\overline{z}\Leftrightarrow\frac{1}{x+yi}=x-yi\)
\(\Leftrightarrow\left(x+yi\right)\left(x-yi\right)=1\Leftrightarrow x^2+y^2=1\)
\(\Rightarrow\left|z\right|=1\)