K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

20 tháng 4 2020

Bạn phải cho câu hỏi chứ , viết thế này ai hiểu nhonhung

20 tháng 4 2020

Câu hỏi đâu rồi bạn?

28 tháng 6 2018

(2x + 3)2 - (5x - 4)(5x - 4) = ( x + 5)2 - (3x - 1)(7x + 2) - (x2 - 1 +1)

<=> 4x2 + 12x + 9 - ( 25x2 - 16)= x2 + 10x + 25 - (21x2 + 6x - 7x - 2) -x2

<=> 4x2 - 25x2 - x2 + 21x2 + x2 + 12x - 10x + 6x - 7x + 9 + 16 - 25 - 2 = 0

<=> x - 2 = 0

<=> x = 2

Vậy x = 2

b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)

16 tháng 10 2019

e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)

\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)

Vậy ....

P(x)=-5x^3-1/3+8x^4+x^2

Q(x)=x^4-2x^3+x^2-5x-2/3

P(x)+Q(x)

=x^4-2x^3+x^2-5x-2/3+8x^4-5x^3+x^2-1/3

=9x^4-7x^3+2x^2-5x-1

P(x)-Q(x)

=x^4-2x^3+x^2-5x-2/3-8x^4+5x^3-x^2+1/3

=-7x^4+3x^3-5x-1/3

13 tháng 7 2018

1, \(\left|\frac{3}{2}x-1\right|-2x=1\Rightarrow\left|\frac{3}{2}x-1\right|=1+2x\)

Vì \(\left|\frac{3}{2}x-1\right|\ge0\Leftrightarrow1+2x\ge0\Leftrightarrow x\ge\frac{-1}{2}\)

\(\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-1=1+2x\\\frac{3}{2}x-1=-1-2x\end{cases}\Rightarrow\orbr{\begin{cases}\frac{3}{2}x-2x=1+1\\\frac{3}{2}x+2x=-1+1\end{cases}\Rightarrow}\orbr{\begin{cases}\frac{-1}{2}x=2\\\frac{7}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-4\left(ktm\right)\\x=0\left(tm\right)\end{cases}}}\)

Vậy x = 0 

2,3 tương tự 1

4, Vì \(\left|x\left(x^2-\frac{5}{4}\right)\right|\ge0\Rightarrow x\ge0\)

Ta có: \(\left|x\left(x^2-\frac{5}{4}\right)\right|=x\Rightarrow x\left(x^2-\frac{5}{4}\right)=\pm x\) (1)

- Nếu x = 0 thì 0 = 0 thỏa mãn (1)

- Nếu \(x\ne0\) thì \(\left(1\right)\Leftrightarrow\orbr{\begin{cases}x^2-\frac{5}{4}=1\\x^2-\frac{5}{4}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\frac{9}{4}\\x^2=\frac{1}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\pm\frac{3}{2}\\x=\pm\frac{1}{2}\end{cases}}}\)

Vì \(x\ge0\Rightarrow x\in\left\{0;\frac{1}{2};\frac{3}{2}\right\}\)

Vậy...

28 tháng 8 2023

a) \(A\left(x\right)=3x^3-4x^4-2x^3+4x^4-5x+3\)

\(\Rightarrow A\left(x\right)=-4x^4+4x^4+3x^3-2x^3-5x+3\)

\(\Rightarrow A\left(x\right)=x^3-5x+3\)

\(B\left(x\right)=5x^3-4x^2-5x^3-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=5x^3-5x^3-4x^2-4x^2-5x-3\)

\(\Rightarrow B\left(x\right)=-8x^2-5x-3\)

b) \(A\left(x\right)+B\left(x\right)=x^3-5x+3+\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-5x+3-8x^2-5x-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-5x-5x+3-3\)

\(\Rightarrow A\left(x\right)+B\left(x\right)=x^3-8x^2-10x\)

\(A\left(x\right)-B\left(x\right)=x^3-5x+3-\left(-8x^2-5x-3\right)\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3-5x+3+8x^2+5x+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2-5x+5x+3+3\)

\(\Rightarrow A\left(x\right)-B\left(x\right)=x^3+8x^2+6\)